Biocompatible and antifouling coating of cell membrane phosphorylcholine and mussel catechol modified multi-arm PEGs.

J Mater Chem B

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China.

Published: March 2015

The design and easy fabrication of biocompatible and antifouling coatings on different materials are extremely important for biotechnological and biomedical devices. Here we report a substrate-independent biomimetic modification strategy for fabricating a biocompatible and antifouling ultra-thin coating. Cell membrane antifouling phosphorylcholine (PC) and/or mussel adhesive catechol (c) groups are grafted at the amino-ends of an 8-armed poly(ethylene glycol). The PC groups are introduced by grafting a random copolymer bearing both PC and active ester groups. The modified 8-arm PEGs (PEG-2c-23PC, PEG-6c-23PC and PEG-8c) anchor themselves onto various substrates from aqueous solution and form cell outer membrane mimetic surfaces. Static contact angle, atomic force microscope (AFM) and X-ray photoelectron spectra (XPS) measurements confirm the successful fabrication of coatings on polydopamine (PDA) precoated surfaces. Real-time interaction results between proteins/bacteria and the coatings measured by surface plasmon resonance (SPR) technique suggest excellent anti-protein adsorption and short-term anti-bacteria adhesion performance. The long-term bacteria adhesion, platelet and L929 cell attachment results strongly support the SPR conclusions. Furthermore, the cell membrane mimetic and mussel adhesive protein mimetic PEG-2c-23PC shows hardly any toxicity to L929 fibroblasts, and the coating surface demonstrates the best anti-biofouling performance. This PDA-assisted immobilization of PC and/or catechol modified multi-arm PEGs provides a convenient and universal way to produce a biocompatible and fouling-resistant surface with tailor-made functions, which hopefully can be expanded to a wider range of applications based on both structure and surface superiorities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb02140aDOI Listing

Publication Analysis

Top Keywords

biocompatible antifouling
12
cell membrane
12
coating cell
8
catechol modified
8
modified multi-arm
8
multi-arm pegs
8
mussel adhesive
8
membrane mimetic
8
cell
5
biocompatible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!