The fabrication of a scaffold able to control the positioning of AuNPs and to trap and concentrate target molecules inside them is a promising idea for a large variety of sensing applications. In this work, we designed and fabricated a scaffold of already-prepared 20 nm AuNPs encapsulated in a PNIPAAm hydrogel and utilizing surface enhanced Raman spectroscopy (SERS), we used it as a sensor with remarkably low limits of detection. In fact, as the target is trapped inside the hydrogel, the following takes place: (a) the concentration of the target increases dramatically and (b) the localization of the AuNPs and thus of the hotspots (areas with extremely high SERS enhancement factors) work synergistically, improving the sensing ability of the scaffold. The SERS enhancement ability of our scaffolds was checked with adenine, 2-naphthalenethiol and melamine molecules; the trapping efficiency was investigated for the melamine and a partition coefficient of k = 5 × 10 was found. Finally, by focusing on a single PNIPAAm hydrogel with encapsulated AuNPs, we managed to detect 10 M or rather 10 molecules of melamine trapped inside the scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb01551gDOI Listing

Publication Analysis

Top Keywords

pnipaam hydrogel
12
encapsulated aunps
8
trapped inside
8
sers enhancement
8
aunps
5
thermoresponsive pnipaam
4
hydrogel
4
hydrogel scaffolds
4
scaffolds encapsulated
4
aunps high
4

Similar Publications

A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers.

Polymers (Basel)

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.

View Article and Find Full Text PDF

The challenge of healing diabetic skin wounds presents a significant hurdle in clinical practice and scientific research. In response to this pressing concern, we have developed a temperature-sensitive, in situ-forming hydrogel comprising poly(-isopropylacrylamide---butyl acrylate) -poly(ethylene glycol) -poly(-isopropylacrylamide--butyl acrylate) copolymer, denoted as PEP, in combination with zinc oxide nanoparticles, forming what we refer to as PEP-ZnO hydrogel. The antimicrobial properties of the PEP-ZnO hydrogel against methicillin-resistant were rigorously assessed by using the bacteriostatic banding method.

View Article and Find Full Text PDF

An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).

View Article and Find Full Text PDF

Intelligent Microneedles Patch with Wireless Self-Sensing and Anti-Infective Actions.

Small

December 2024

Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China.

Traditional microneedle (MN) technology offers unique advantages in treating wound infections; however, its single-function design lacks the capability for real-time monitoring of wound conditions, often resulting in uncontrolled drug release. Herein, an anti-infective and intelligent MN patch (SP-CSMN) integrating three functional modules is developed, including temperature monitoring, Bluetooth wireless communication, and responsive drug release. The patch employed chitosan (CS) as a porous substrate, filled with temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) to encapsulate and release the antibiotic rifampicin.

View Article and Find Full Text PDF

Thermosensitive, injectable, antibacterial glabridin liposome/chitosan dual network hydrogel for diabetic wound healing.

Int J Biol Macromol

December 2024

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Thermosensitive hydrogels show great potential in healing diabetic wounds, but they are still challenged by the long healing time, risk of infectivity, and accumulation of melanin. Herein, a dual network hydrogel is designed, which consists of chlorogenic acid (CA) modified chitosan (CS) (CA@CS), poly(N-isopropylacrylamide) (PNIPAm), and glabridin liposomes (GL). The gelation transition temperature of the hydrogel is 32-34 °C, which thus endows it with superior injectability at ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!