Supramolecular antimicrobial capsules assembled from polyoxometalates and chitosan.

J Mater Chem B

Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018-Zaragoza, Spain.

Published: November 2014

This communication describes a surfactant-based strategy towards spherical metal-organic nanohybrid structures with antimicrobial properties. We demonstrate that the growth of the Gram-negative bacterium E.coli can be dramatically affected by the presence of these hybrid materials and that this effect strictly depends on the type of contained polyoxometalate and on the size of the composites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb01460jDOI Listing

Publication Analysis

Top Keywords

supramolecular antimicrobial
4
antimicrobial capsules
4
capsules assembled
4
assembled polyoxometalates
4
polyoxometalates chitosan
4
chitosan communication
4
communication describes
4
describes surfactant-based
4
surfactant-based strategy
4
strategy spherical
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

In this present study, we developed and characterized a series of supramolecular G4 hydrogels by integrating -cyclodextrin (-CD) and boronic acid linkers into a supramolecular matrix to enhance antibacterial activity against (). We systematically investigated how varying the number of free boronic acid moieties (ranging from two to six), along with guanosine and β-CD content, influences both the structural integrity and antimicrobial efficacy of these materials. Comprehensive characterization using FTIR, circular dichroism, X-ray diffraction, SEM, AFM, and rheological measurements confirmed successful synthesis and revealed that higher boronic acid content correlated with a stronger, more organized network.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.

View Article and Find Full Text PDF

Toluidine blue O demethylated photoproducts as type II photosensitizers.

Photochem Photobiol

January 2025

Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama.

Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!