Fluorescent microspheres are prepared by attaching self-assembled polydiacetylene (PDA) vesicles with carboxyl side groups onto the substrate amino-modified poly(glycidylmethacrylate) (APGMA) microspheres. The characterization by SEM, confocal microscopy and flow cytometry demonstrated that the final resulting microspheres are highly uniform both in size (with a diameter of 5 μm) and in fluorescence emission (coefficient of variance < 3%). The Brunauer-Emmett-Teller (BET) surface area of these spheres is 114 m g. In addition, there are evenly distributed pores with an average size of 20.6 nm on the spheres. These spheres are found to have good thermal stability and photostability, and do not suffer from fluorophore leaching. Fluorescein isothiocyanate (FITC) labelled bovine serum albumin (BSA) as a representative biomolecule can be easily attached onto the fluorescent microspheres. All these characteristics possessed by the APGMA-PDA spheres allow them to be directly used as carriers of biomolecules in lab-on-a-chip immunoassay systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb00561a | DOI Listing |
Biosens Bioelectron
January 2025
Synthetic Biology Research Center, Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address:
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that poses a significant risk to human health and well-being. The high cost and invasiveness of neuroimaging and cerebrospinal fluid (CSF) analysis underscores the necessity for accessible early screening via blood samples. In this study, we developed an ultrasound-based strategy for emergent macroscopic that enhances the acoustic response enrichment of specific proteins by introducing functionalized microspheres.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.
View Article and Find Full Text PDFFood Chem
January 2025
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. Electronic address:
The mass production and use of organophosphorus pesticides (OPs) have led to a threat to human health. Therefore, establishing a sensitive, rapid, and high-throughput detection method is of great importance. In this study, computer-aided molecular design was firstly applied to design the specific haptens of phorate (PHO), fenthion (FEN), and profenofos (PRO), and high-performance monoclonal antibodies against PHO, FEN, and PRO were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!