Here, we describe a robust process aiming at conferring antibacterial properties on stainless steel through the covalent grafting of nisin, a natural antimicrobial peptide, onto a functional plasma thin film deposited by an atmospheric pressure dielectric barrier discharge process. The three different steps of the procedure, namely the deposition of a carboxyl rich thin layer, the surface activation by using a zero-length crosslinking agent and the nisin immobilisation, are reported and thoroughly characterised. A correlation between the carboxylic group surface concentration and the surface roughness onto the antibacterial properties of the layers is evidenced. Finally, IR analyses appear as a powerful analytical tool allowing us to validate the different chemical surface modifications, to confirm the relevance of the activation step to achieve a stable and homogenous peptide grafting over all the surfaces, as well as to investigate the secondary structure of immobilized peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb00503a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!