Advanced neural research demands new electrode materials with high performance. Herein, we have developed a facile approach to synthesize amphiphilic reduced graphene oxide (rGO) and demonstrated its performance in electrically stimulating neural cells with high charge injection capacity. Synthesis of the amphiphilic rGO features covalent functionalization and simultaneous thermal reduction in a one-step manner. The covalent functionalization of methoxy poly(ethylene glycol) (mPEG) chains on the rGO surface not only provides a high dispersibility in various solvents, enabling convenient post-treatment processes, but also allows for an enhancement in double-layer charging capacitance. Calcium imaging of PC12 neural cells on the amphiphilic mPEG-rGO films has revealed a predominant increase in the percentage of cells with higher action potentials, derived from double-layer capacitance enhancement in charge injection. These results suggest that the new amphiphilic mPEG-rGO material is capable of providing a much safer and efficacious solution for neural prostheses applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb00279b | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.
View Article and Find Full Text PDFNat Commun
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Jining NO.1 People's Hospital, Jining, Shandong 272011, China.
Objective: The objective of this study is to analyze and identify the main chemical components and blood-absorbed components of Xuantu Granules and predict their pharmacological substance basis and mechanism in the treatment of DKD.
Methods: A DKD rat model was established by feeding SD rats a high-fat and high-sugar diet and administering intraperitoneal injections of streptozotocin (STZ). The therapeutic effect of Xuantu granules was evaluated.
J Phys Chem Lett
January 2025
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China.
Colloidal quantum dot (CQD) near-infrared (NIR) upconversion devices (UCDs) can directly convert low-energy NIR light into higher energy visible light without the need for additional integrated circuits, which is advantageous for NIR sensing and imaging. However, the state-of-the-art CQD NIR upconverters still face challenges, including high turn-on voltage (), low photon-to-photon (p-p) upconversion efficiency, and low current on/off ratio, primarily due to inherent limitations in the device structure and operating mechanisms. In this work, we developed a CQD NIR UCD based on a hole-only injection mechanism.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain. Electronic address:
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!