Natural hydrogels such as gelatin are highly desirable biomaterials for application in drug delivery, biosensors, bioactuators and extracellular matrix components due to strong biocompatibility and biodegradability. Typically, chemical crosslinkers are used to optimize material properties, often introducing toxic byproducts into the material. In this present work, electron irradiation is employed as a reagent-free crosslinking technique to precisely tailor the viscoelasticity, swelling behavior, thermal stability and structure of gelatin. With increasing electron dose, changes in swelling behavior and rheology indicate increasing amounts of random coils and dangling ends as opposed to helical content, a result confirmed through Fourier transform infrared spectroscopy. Gel fraction, rheology and swelling measurements at 37 °C were used to verify thermal stability in biological conditions. Scanning electron microscopy images of dried gelatin samples support these conclusions by revealing a loss of free volume and apparent order in the fracture patterns. The degree of crosslinking and mesh size are quantified by rubber elasticity theory and the Flory-Rehner equation. Overall, precise control of material properties is demonstrated through the interplay of concentration and irradiation dose, while providing an extensive parameter-property database suitable for optimized synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb00429a | DOI Listing |
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFArch Toxicol
January 2025
Cosmetics Europe, Brussels, Belgium.
Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.
View Article and Find Full Text PDFNeurol Ther
January 2025
InterHealth Hospital, Riyadh, Saudi Arabia.
Introduction: The emergence of high-efficacy disease-modifying therapies (HE DMT) for multiple sclerosis (MS) may pose challenges to the administration and monitoring burden of the therapies. This article presents the results of the Delphi consensus method to generate insights from experts on the administration and monitoring burden of HE DMT in Saudi Arabia with a special focus on cladribine.
Methods: Between January and March 2023, a two-round modified Delphi method was used to establish consensus regarding the administration and monitoring burden of HE DMTs used for MS.
Environ Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.
Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!