Ti-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides.

J Mater Chem B

Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.

Published: July 2014

Highly selective and efficient enrichment of trace phosphorylated proteins or peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. In this study, a novel immobilized metal affinity chromatography (IMAC) material has been synthesized to improve the enrichment specificity and sensitivity for phosphopeptides by introducing a titanium phosphate moiety on a multilayer polysaccharide (hyaluronate (HA) and chitosan (CS)) coated FeO@SiO nanoparticle (denoted as FeO@SiO@(HA/CS)-Ti IMAC). The thicker multilayer polysaccharide endows excellent hydrophilic properties and a higher binding capacity of the titanium ion to the IMAC material. Due to the combination of uniform magnetic properties, highly hydrophilic properties and enhanced binding capacity of the titanium ion, the FeO@SiO@(HA/CS)-Ti nanoparticle possesses many merits, such as high selectivity for phosphopeptides (phosphopeptides/non-phosphopeptides at a molar ratio of 1 : 2000), extreme detection sensitivity (0.5 fmol), large binding capacity (100 mg g), high enrichment recovery (85.45%) and rapid magnetic separation (within 10 s). Moreover, the as-prepared IMAC nanoparticle provides effective enrichment of phosphopeptides from real samples (human serum and nonfat milk), showing great potential as a tool for the detection and identification of low-abundance phosphopeptides in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb00479eDOI Listing

Publication Analysis

Top Keywords

multilayer polysaccharide
12
binding capacity
12
highly selective
8
enrichment phosphopeptides
8
biological samples
8
imac material
8
hydrophilic properties
8
capacity titanium
8
titanium ion
8
enrichment
5

Similar Publications

[Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method.

View Article and Find Full Text PDF

Biodegradable polymeric coatings are being explored as a preventive strategy for orthopaedic device-related infection. In this study, titanium surfaces (Ti) were coated with poly-D,L-lactide (PDLLA, (P)), polyethylene-glycol poly-D,L-lactide PEGylated-PDLLA, (PP20)), or multi-layered PEGylated-PDLLA (M), with or without 1 % silver sulfadiazine. The aim was to evaluate their cytocompatibility, resistance to biofilm formation, and their potential to enhance the susceptibility of any biofilm formed to antibiotics.

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China.

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Q = 47.

View Article and Find Full Text PDF

Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles.

Int J Mol Sci

December 2024

Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.

To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!