Molecular imprinting is an important tool for generating synthetic receptors with specific recognition sites. The resulting artificial receptor has been extensively used in areas that require molecular recognition. Nevertheless, various imprinted materials synthesized using conventional imprinting protocols have low binding capacities and slow binding kinetics because of difficulty in extracting the original templates and high resistance to mass transfer. The combination of molecular imprinting and nanostructured materials is expected to overcome such difficulties. In this work, template molecules were attached onto the electrospun fibers and by using electrospun nanofibers and attached molecules as sacrificial templates, surface molecularly imprinted membranes with bi-, tri- or tetramodal pore structures were fabricated in the absence or presence of SiO nanoparticles in the molecular imprinting precursor. As a demonstration, bovine serum albumin (BSA) and hemoglobin from bovine blood (bHb) were chosen as template molecules and imprinted electrospun affinity membranes with multimodal pore structures were successfully fabricated for protein separation. Compared with the membrane with a bi- or trimodal pore structure, the tetramodal membrane, which consisted of tubule channels, imprinted nanocavities on the inner surface of tube wall, gaps between tubes and pores in the tube wall left by SiO nanoparticles, exhibited a very favorable recognition property and efficient separation toward the template protein molecules in aqueous medium. In a two-protein system, the tetramodal membrane has also shown a very high specific recognition for the template proteins over the non-template proteins. Dynamic binding tests and reusability tests further revealed that tetramodal porous membranes had excellent selectivity, faster binding kinetics and good regenerability. These results indicate that in conjugation with the surface molecular imprinting technique the use of electrospun fibers as sacrificial templates could be used as an efficient strategy for development of high performance affinity membrane materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3tb20973c | DOI Listing |
PLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFTalanta
January 2025
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, People's Republic of China.
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt. Electronic address:
Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH).
View Article and Find Full Text PDFCurr Opin Psychiatry
December 2024
Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.
Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.
Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.
Anal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!