Double chemical functionalization of gelatin by methacrylation and acetylation of free amino groups enables control over both the viscous behavior of its solutions and the mechanical properties of the resulting hydrogels after photochemical crosslinking. The degree of methacrylation is controlled by the molar excess of methacrylic anhydride applied. Tenfold molar excess leads to highly methacrylated gelatin (GM), resulting in solutions with low viscosities within the inkjet-printable range (10 wt%: 3.3 ± 0.5 mPa s, 37 °C) and crosslinked hydrogels with high storage moduli G' (10 wt%: 15.2 ± 6.4 kPa). Twofold excess of methacrylic anhydride leads to less methacrylated gelatin (GM) proper for preparation of soft hydrogels (10 wt%: G' = 9.8 ± 4.6 mPa s) but its solutions are highly viscous (10 wt%: 14.2 ± 1.1 mPa s, 37 °C) and thus prone to clogging printing nozzles. Here we show that additional introduction of acetyl functionalities into GM results in a significant decrease in solution viscosity (10 wt%: 2.9 ± 0.2 mPa s, 37 °C) and prevention of physical gel formation. In such a manner twofold functionalized gelatin can be inkjet-printed while the degree of chemical crosslinking remains low and the resulting gels are soft. Thus, by adjustable twofold modification of gelatin, i.e. inserting photochemically reactive and inert groups, a versatile bioink for inkjet bioprinting is created, which allows for addressing ECM based hydrogel matrices with a broad range of physical properties. Moreover, bioinks are proven to be cytocompatible and proper for inkjet printing of viable mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3tb20745e | DOI Listing |
Biomed Mater
December 2024
Department of Paper Technology, Indian Institute of Technology Roorkee, Department of Paper Technology, IIT Roorkee, Saharanpur, 247001, INDIA.
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.
View Article and Find Full Text PDFGels
December 2024
School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China.
In this study, a new environmentally friendly and efficient method for recycling and reusing waste polyurethane sheets is proposed. SiO aerogel was prepared using the sol-gel method, and mullite whiskers were introduced to enhance its toughness. The whisker-toughened aerogel was used in the degradation of waste polyurethane to produce modified recycled polyol, which was subsequently used to prepare recycled polyurethane foam insulation material.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
The CO-epoxide addition to cyclic carbonate is of great significance but usually requires high temperatures and CO pressures. Herein, a spirobifluorene-based porous organic polymer catalyst is designed with a Co-salen complex immobilized on the backbone (ST-CoSalen-POP) to enable CO fixation under mild conditions. ST-CoSalen-POP possesses a high Co-loading content (9.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.
Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address:
Technical alkaline lignin (TAL)-based composite films have been developed for anti-corrosion applications, during which one-component solvents, including acetone and ethanol, were employed. The poor solubility of TAL in the abovementioned solvents undoubtedly resulted in inhomogeneous surface micromorphology and the consequent unstable performance. The present study provides a series of ethylcellulose/TAL (EC/TAL) composite films with uniform surface microstructure by using the 1,4-dioxane/water binary solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!