A straightforward and versatile method for immobilizing polysaccharides on the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) electrospun fibers is developed with the objective of designing a new functional biomaterial having a significant effect on cell proliferation. The approach relies on a one-step procedure: UV grafting of a photosensitive dextran (AQ-Dext) on the surface of PHBHV fibers according to a "grafting onto" method, with the use of an anthraquinone derivative. The photografting is conducted through a photoinduced free radical process employing an anthraquinone-based photosensitizer in aqueous medium. Under appropriate conditions, AQ-Dext reacts with C-H σ-bonds of the polymer substrate (PHBHV) to produce a semianthraquinone radical according to an H-abstraction reaction. This radical recombines together with the alkylradical (R˙) formed at the surface of PHBHV fibers via the oxygen atom of the anthraquinone photolinker. The photochemical mechanism of the AQ-Dext photolysis is entirely described for the first time by an electron spin resonance technique and laser flash photolysis. The modified PHBHV microfibrous scaffolds are extensively characterized by water contact angle measurements, XPS analysis and atomic force microscopy, confirming the covalent grafting of dextran on PHBHV fibers. Finally, a primary investigation demonstrates that dextran modified PHBHV fibers are permissive for optimized cell colonization and proliferation. The cell morphologies are described by SEM micrographs, revealing a significant affinity and favorable interactions for adherence of human mesenchymal stem cells (hMSCs) on scaffolds provided by dextran chemical structure. Moreover, the proliferation rate of hMSCs increases on this new functionalized biomaterial associated with a higher extra-cellular matrix production after 5 days of culture in comparison with native PHBHV fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3tb20869aDOI Listing

Publication Analysis

Top Keywords

phbhv fibers
20
phbhv
8
surface phbhv
8
modified phbhv
8
fibers
6
dextran
5
photoinduced modification
4
modification natural
4
natural biopolymer
4
biopolymer poly3-hydroxybutyrate-co-3-hydroxyvalerate
4

Similar Publications

The mechanical behavior of polymer materials is heavily influenced by a phenomenon known as crazing. Crazing is a precursor to damage and leads to the formation of cracks as it grows in both thickness and tip size. The current research employs an in situ SEM method to investigate the initiation and progression of crazing in all-biopolymeric blends based on Polyhydroxyalkanoates (PHAs).

View Article and Find Full Text PDF

The delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties.

View Article and Find Full Text PDF

In recent years the interest in the realization of green wood plastic composites (GWPC) materials has increased due to the necessity of reducing the proliferation of synthetic plastics. In this work, we study a specific class of GWPCs from its synthesis to the characterization of its mechanical properties. These properties are related to the underlying microstructure using both experimental and modeling approaches.

View Article and Find Full Text PDF

Biocomposites Based on Poly(3-Hydroxybutyrate--3-Hydroxyvalerate) (PHBHV) and Fibers with Improved Fiber/Matrix Interface.

Polymers (Basel)

May 2018

Laboratoire de Modélisation et Simulation Multi-Echelle, Université Paris Est, UMR 8208, CNRS 61 Avenue du Général de Gaulle, 94010 Crétéil, France.

In this paper, green biocomposites based on poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBHV) and fibers (MIS) were prepared in the presence of dicumyl peroxide (DCP) via reactive extrusion. The objective of this study was to optimize the interfacial adhesion between the reinforcement and the matrix, improving the mechanical properties of the final material. To this aim, two fibers mass fractions (5 and 20 wt %) and two different fiber sizes obtained by two opening mesh sieves (1 mm and 45 μm) were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!