Electromechanical behaviour of Nafion-based soft actuators.

J Mater Chem B

EastChem, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.

Published: May 2013

Soft actuators based on Ionic Polymer-Metal Composites (IPMCs) are of considerable interest for applications in biomedical devices and robotics. In this work, thin commercial and thick laboratory-prepared Nafion membranes were made into model IPMC actuator devices by incorporation of Pt electrode layers. In extensive electromechanical tests the maximum average tip displacement and maximum force generated were recorded. The effect of amplitude and frequency of the applied voltage on both displacement and force was examined as were the effects of the origin of the Nafion membrane, the Pt loading, the structure of the electrode and the presence or absence of an Au overlayer. The cast samples generated much smaller displacements but much larger forces than the commercial Nafion samples. For all samples, displacement and force increased with increasing applied voltage, with increased number of Pt plating cycles and when an Au overlayer was present but decreased with increasing applied voltage frequency. Waveform analysis of applied voltage, current and force was performed by considering the capacitive nature of the IPMC actuators.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3tb20243gDOI Listing

Publication Analysis

Top Keywords

applied voltage
16
soft actuators
8
displacement force
8
increasing applied
8
electromechanical behaviour
4
behaviour nafion-based
4
nafion-based soft
4
actuators soft
4
actuators based
4
based ionic
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Single-electron transfer, low alkali metal contents, and large-molecular masses limit the capacity of cathodes. This study uses a cost-effective and light-molecular-mass orthosilicate material, KFeSiO, with a high initial potassium content, as a cathode for potassium-ion batteries to enable the transfer of more than one electron. Despite the limited valence change of Fe ions during cycling, KFeSiO can undergo multiple electron transfers via successive oxygen anionic redox reactions to generate a high reversible capacity.

View Article and Find Full Text PDF

Stylus pen-based ambient ionization mass spectrometry for the analysis of volatiles and semivolatiles from liquid, viscous, and solid samples.

Anal Chim Acta

February 2025

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:

Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

In this study, it is shown that an efficient organic optocoupler (OPC) can be fabricated using commercially available and solution-processable organic semiconductors. The transmitter is a single-active-layer organic light-emitting diode (OLED) made from a well-known polyparavinylene derivative, Super Yellow. The receiver is an organic light-emitting diode (OLSD) with a single active layer consisting of a mixture of the polymer donor PTB7-Th and the low-molecular-weight acceptor ITIC; the receiver operates without an applied reverse voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!