Poly(methyl methacrylate) based bone cement and its nanocomposites with layered double hydroxide (LDH) have been developed with greater mechanical strength and biocompatibility as a grouting material for total joint arthroplasty. Bivalent magnesium has been replaced with trivalent aluminium with various mole ratios, keeping the layered pattern of the LDH intact, to cater for the effect of varying substitution on the property enhancement of the nanocomposites. The intercalation of polymer inside the LDH layers makes them disordered and mechanically stiffer and tougher by more than 100%. The thermal stability of bone cement has increased by more than 30 °C in the presence of 1 wt% of nanoLDH, homogenously distributed in the bone cement matrix by creating an inorganic thermal barrier out of the LDH dispersion. The improvement in the properties of the nanocomposites has been explained in terms of the strong interaction between nanoLDH and polymer. The superior bioactivity and biocompatibility of the nanocomposites, as compared to pure bone cement, has been established through hemolysis assay, cell adhesion, MTT assay and cell proliferation using fluorescence imaging. The developed nanocomposites have been used as a grouting material and significant improvements have been achieved in fatigue behaviour with gradual increment of Al substitution in the Mg : Al mole ratio in nanoLDH, demonstrating the real use of the material in the biomedical area. In vivo experiments on rabbits clearly revealed the superior efficacy of bone cement nanocomposites, over pure bone cement and a blank.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3tb00004d | DOI Listing |
Front Oncol
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.
Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.
Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.
Clin Oral Investig
January 2025
Department of Biology, Science Faculty, Atatürk University, Erzurum, Türkiye.
Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.
Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.
J Bone Joint Surg Am
January 2025
Leeds Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, West Yorkshire, England.
Background: In this study, we estimated the risk of surgically treated postoperative periprosthetic femoral fractures (POPFFs) associated with femoral implants frequently used for total hip arthroplasty (THA).
Methods: In this cohort study of patients who underwent primary THA in England between January 1, 2004, and December 31, 2020, POPFFs were identified from prospectively collected revision records and national hospital records. POPFF incidence rates, adjusting for potential confounders, were estimated for common stems.
Lasers Med Sci
January 2025
Department of Preventive and Restorative Dentistry, Discipline of Endodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Prosthodontics, Government Dental College, Kozhikode, Kerala, India, Orcid: https://orcid.org/0000-0003-1456-3851.
Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.
Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!