We report new injectable and thermosensitive hydrogels from polycaprolactone-graft-polyethylene glycol (PCL-g-PEG). The PCL-g-PEG polymer aqueous solution was injectable and formed a physical hydrogel at human body temperature. The rheological properties, sol-gel transition mechanisms, and in vitro degradation properties of PCL-g-PEG hydrogels were investigated. Rheological results demonstrate that hydrogels with tunable storage moduli (G') that span four orders of magnitude, from 0.2 to 5500 Pa, can be obtained by varying polymer concentrations. Hydrophobic dye solubilization, dynamic light scattering, and X-ray diffraction results suggest that micelle aggregation and partial crystallization of the polycaprolactone segment lead to the sol-gel transition with increasing temperature. The degradation of PCL-g-PEG hydrogels was slow in the absence of the enzyme lipase, but can be substantially increased by lipase in a concentration-dependent manner. The PCL-g-PEG hydrogel has a low critical gelation concentration, high storage modulus, and easily handled solid morphology, representing great advantages over our previously developed structurally analogous PLGA-g-PEG. The results presented showcase the potential biomedical application of the versatile PCL-g-PEG hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2tb00468b | DOI Listing |
Int J Pharm
December 2024
Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India. Electronic address:
Eur Cell Mater
June 2018
Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 33305,
Tissue engineering has the potential to overcome the limitations of tracheal reconstruction. To tissue-engineer a tracheal cartilage, auricular chondrocytes were encapsulated in a photocurable poly(ethylene glycol)/poly(ε-caprolactone) (PEG/PCL) hydrogel. Chondrogenic genes, including Sox9, Acan and Col2a1, were up-regulated in auricular chondrocytes after 2 weeks of in vitro cultivation in the PEG/PCL hydrogel.
View Article and Find Full Text PDFVet Comp Orthop Traumatol
July 2016
Kelly R. Might, DVM, Mobile Veterinary Specialist, 2919 Demona Dr., Austin, TX 78733, USA, E-mail:
Objectives: The purposes of this study were to determine: 1) the efficacy of polycaprolactone-g-polyethylene glycol (PCL-g-PEG) and polylactic-co-glycolic acid (PLGA-g-PEG) hydrogels and an absorbable collagen sponge (ACS) as carriers for lysophosphatidic acid (LPA), 2) the effect of LPA on bone healing in dogs, and 3) the ideal dose of LPA to maximally stimulate bone healing.
Methods: Bilateral ulnar ostectomies were performed on purpose bred dogs. Control defects were filled with a PCL-g-PEG or PLGA-g-PEG hydrogel, or a saline soaked ACS.
J Mater Chem B
March 2013
Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
We report new injectable and thermosensitive hydrogels from polycaprolactone-graft-polyethylene glycol (PCL-g-PEG). The PCL-g-PEG polymer aqueous solution was injectable and formed a physical hydrogel at human body temperature. The rheological properties, sol-gel transition mechanisms, and in vitro degradation properties of PCL-g-PEG hydrogels were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!