Biological materials are usually characterized by sophisticate structures and hierarchical organizations, leading to remarkable and multiple functions, which has been a source of inspiration for the fabrication of a wide variety of colloidal materials mimicking the structure and functions of biological systems. In this feature article, we summarize recent progress in the research on fabrication and applications of bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. Three typical kinds of bioinspired colloidal materials are highlighted, which include bioinspired photonic structures based on colloidal crystals, colloidal assemblies with a nacre-like structure and novel mechanical properties, and colloidal cellular systems consisting of colloidal particles enclosed by lipid bilayers and possessing certain cellular functions. In addition, the challenges and perspectives in the future development of bioinspired colloidal materials are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2tb00175f | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.
View Article and Find Full Text PDFSoft Matter
January 2025
Physics Department, Wesleyan University, Middletown, CT 06459, USA.
We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.
The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.
The increasing prevalence of antibiotic resistance, driven by the overuse and misuse of conventional antibiotics, has become a critical public health concern. Photothermal antibacterial therapy (PTAT) utilizes heat generated by photothermal agents under light exposure to inhibit bacterial growth without inducing resistance, attracting more and more attention. Quinoid conjugated polymers, especially para-azaquinodimethane (AQM) polymer, are a class of organic semiconductors known for efficient π-electron delocalization, near-infrared absorption, and narrow bandgap, showing great potential in the application of photothermal reagents.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!