Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions.

J Mater Chem B

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P. R. China.

Published: January 2013

Biological materials are usually characterized by sophisticate structures and hierarchical organizations, leading to remarkable and multiple functions, which has been a source of inspiration for the fabrication of a wide variety of colloidal materials mimicking the structure and functions of biological systems. In this feature article, we summarize recent progress in the research on fabrication and applications of bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. Three typical kinds of bioinspired colloidal materials are highlighted, which include bioinspired photonic structures based on colloidal crystals, colloidal assemblies with a nacre-like structure and novel mechanical properties, and colloidal cellular systems consisting of colloidal particles enclosed by lipid bilayers and possessing certain cellular functions. In addition, the challenges and perspectives in the future development of bioinspired colloidal materials are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2tb00175fDOI Listing

Publication Analysis

Top Keywords

colloidal materials
20
bioinspired colloidal
16
materials special
8
special optical
8
optical mechanical
8
mechanical cell-mimetic
8
cell-mimetic functions
8
functions biological
8
colloidal
8
materials
6

Similar Publications

Phonon Involved Photoluminescence of Mn Ions Doped CsPbCl Micro-Size Perovskite Assembled Crystals.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.

Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.

View Article and Find Full Text PDF

We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.

View Article and Find Full Text PDF

Confinement Induces Morphological and Topological Transitions in Multivesicles.

ACS Nano

January 2025

Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.

The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored.

View Article and Find Full Text PDF

Rational Design of Quinoidal Conjugated Polymers for Photothermal Antibacterial Therapy.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

The increasing prevalence of antibiotic resistance, driven by the overuse and misuse of conventional antibiotics, has become a critical public health concern. Photothermal antibacterial therapy (PTAT) utilizes heat generated by photothermal agents under light exposure to inhibit bacterial growth without inducing resistance, attracting more and more attention. Quinoid conjugated polymers, especially para-azaquinodimethane (AQM) polymer, are a class of organic semiconductors known for efficient π-electron delocalization, near-infrared absorption, and narrow bandgap, showing great potential in the application of photothermal reagents.

View Article and Find Full Text PDF

Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!