A pH-responsive controlled release system is proposed using acid-decomposable layered double hydroxides (LDHs) as inorganic nanovalves by virtue of the electrostatic adsorption of LDH nanosheets on the surface of mesoporous silica nanoparticles (MSNs). Guest molecules (Ru(bpy)Cl in this case) are loaded and encapsulated in a neutral environment. The dissolution of the LDH coatings in an acidic environment triggers the release of the guest molecules from the MSNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3tb00518f | DOI Listing |
Int J Biol Macromol
January 2025
Pharmacy School, Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China. Electronic address:
In this study, we developed calcium alginate-coated nanovesicles derived from macrophage membranes loaded with berberine (Ber@MVs-CA) for the oral treatment of ulcerative colitis (UC). Ber@MVs-CA demonstrates resistance to gastric acid and controlled drug release in the colonic pH environment, while actively targeting sites of ulcerative colitis injury. pH-responsive release of Ber in Ber@MVs-CA was confirmed through in vitro release experiments.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!