A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of poly(l-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. | LitMetric

Porous scaffolds composed of polypeptides and polysaccharides have remarkable biocompatibility and potential to mimic an extracellular matrix for tissue engineering. This study presented a novel design of polyelectrolyte complex porous scaffolds of a synthetic polypeptide poly(l-glutamic acid) (PLGA) and a natural polysaccharide chitosan (CS) using a freeze drying method. The microstructure of the porous scaffolds could be adjusted by changing the freezing temperature and solid content of the reacting polymer. PLGA/CS scaffolds fabricated from 2% solid content and at a freezing temperature of -20 °C exhibited an interconnected porous structure with average pore size between 150 and 200 μm. The contact angle of less than 75° and high swelling ratio of more than 700% showed the excellent hydrophilic performance of these scaffolds. Degradation of the PLGA/CS composite scaffolds could be modified and more CS content contributed a higher resistance to biodegradation. The mechanical properties of the scaffolds could be controlled by varying the PLGA/CS molar ratio and solid content. The scaffolds exhibited good elastic behavior in wet state. In vitro culture of rabbit adipose-derived stem cells (ASCs) indicated that the selected PLGA/CS porous scaffolds supported cell attachment and growth. In summary, the PLGA/CS porous scaffolds show excellent properties, such as an interconnected porous structure, mechanical strength, hydrophilicity, biodegradability and biocompatibility. The successful repair of articular cartilage defects showed the potentiality of using PLGA/CS scaffolds in cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2tb00440bDOI Listing

Publication Analysis

Top Keywords

porous scaffolds
24
scaffolds
12
tissue engineering
12
solid content
12
polyelectrolyte complex
8
porous
8
complex porous
8
freezing temperature
8
plga/cs scaffolds
8
interconnected porous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!