Thermal-Energy Storage (TES) properties of organic phase change materials have been experimentally investigated and reported in this paper. Three paraffin-based Phase Change Materials (PCMs) and one bio-based PCM are considered with melting temperatures of 24 °C, 25 °C and 26 °C. Sensible heat storage capacities, melting characteristics and latent heat enthalpies of the studied PCMs are investigated through Differential Scanning Calorimetry (DSC) measurements. Two alternative methods, namely the classical dynamic DSC and a stepwise approach, are performed and compared with the aim to eliminate and/or overcome possible measurement errors. In particular, for DSC measurements this could be related to the size of the samples and its representativity, heating rate effects and low thermal conductivity of the PCMs, which may affect the results and possibly cause a loss of objectivity of the measurements. Based on results achieved from this study, clear information can be figured out on how to conduct and characterize paraffin and bio-based PCMs, and how to apply them in TES calculations for building applications and/or simulations. It is observed that both paraffinic and bio-based PCMs possess a comparable TES capacity within the selected phase transition temperature, being representative for the human thermal comfort zone. The phase change of bio-based PCMs occurred over a much narrower temperature range when compared to the wider windows characterizing the paraffin-based materials. Bio-based PCMs turned out to be very suitable for building applications and can be an environmentally friendly substitute for petroleum-based PCMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178686 | PMC |
http://dx.doi.org/10.3390/ma13071705 | DOI Listing |
Materials (Basel)
September 2024
Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
The increasing global population has intensified the demand for energy and food, leading to significant greenhouse gas (GHG) emissions from both sectors. To mitigate these impacts and achieve Sustainable Development Goals (SDGs), passive thermal storage methods, particularly using phase change materials (PCMs), have become crucial for enhancing energy efficiency and reducing GHG emissions across various industries. This paper discusses the state of the art of bio-based phase change materials (bio-PCMs), derived from animal fats and plant oils as sustainable alternatives to traditional paraffin-based PCMs, while addressing the challenges of developing bio-PCMs with suitable phase change properties for practical applications.
View Article and Find Full Text PDFAdv Mater
September 2024
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China.
Phase change materials (PCMs) are crucial for sustainable thermal management in energy-efficient construction and cold chain logistics, as they can store and release renewable thermal energy. However, traditional PCMs suffer from leakage and a loss of formability above their phase change temperatures, limiting their shape stability and versatility. Inspired by the muscle structure, formable PCMs with a hierarchical structure and solvent-responsive supramolecular networks based on polyvinyl alcohol (PVA)/wood composites are developed.
View Article and Find Full Text PDFMaterials (Basel)
March 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
The thermal storage performance, cost, and stability of phase-change materials (PCMs) are critical factors influencing their application in the field of thermal energy storage. Porous carbon, with its excellent support, thermal conductivity, and energy storage properties, is considered one of the most promising support matrix materials. However, the simple and efficient synthesis of high-performance and highly active bio-based materials under mild conditions still faces challenges.
View Article and Find Full Text PDFHeliyon
February 2024
Saveetha School of Engineering, SIMATS, Chennai 602 105, Tamil Nadu, India.
This article explores the use of phase change materials (PCMs) derived from waste, in energy storage systems. It emphasizes the potential of these PCMs in addressing concerns related to fossil fuel usage and environmental impact. This article also highlights the aspects of these PCMs including reduced reliance on renewable resources minimized greenhouse gas emissions and waste reduction.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
Phase change materials (PCMs) have received increasing attention in recent years as they enable the storage of thermal energy in the form of sensible and latent heat, and they are used in advanced technical solutions for the conservation of sustainable and waste energy. Importantly, most of the currently applied PCMs are produced from non-renewable sources and their carbon footprint is associated with some environmental impact. However, novel PCMs can also be designed and fabricated using green materials without or with a slight impact on the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!