Experimental and Numerical Analyses of the Failure of Prestressed Concrete Railway Sleepers.

Materials (Basel)

Department of Civil and Environmental Engineering, SG-12 Building, Darcy Ribeiro Campus, University of Brasilia, Brasilia 70910-900, Brazil.

Published: April 2020

This paper carries out the assessment of load-carrying capacity of prestressed concrete sleepers, in accordance with Brazilian Standard (ABNT NBR 11709) and AREMA Standard. In a lot of railways around the world, many prestressed concrete sleepers have failed due to Rail Seat Abrasion (RSA) and corrosion. RSA is the wear degradation underneath the rail on the surface of prestressed concrete sleepers. In this paper, a numerical study was carried out to evaluate the load-carrying capacity of the prestressed concrete sleepers, using ABAQUS software. The nonlinear using Concrete Damage Plasticity model was validated by 18 experimental results, in accordance to standards. Using the validated model, the influence of different wear depth RSA, combined with corrosion of the prestressed wires, is investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178703PMC
http://dx.doi.org/10.3390/ma13071704DOI Listing

Publication Analysis

Top Keywords

prestressed concrete
20
concrete sleepers
16
sleepers paper
8
load-carrying capacity
8
capacity prestressed
8
prestressed
6
concrete
6
sleepers
5
experimental numerical
4
numerical analyses
4

Similar Publications

Experimental Study on Deep-Drawing Dies Made of Pre-Stressed UHPC.

Materials (Basel)

January 2025

Chair of Metal Forming and Casting, Technical University of Munich, Walther-Meissner-Strasse 4, 85748 Garching, Germany.

Deep drawing is a cost-efficient way of producing sheet metal parts in high production volumes. Prototypes and very small series are expensive due to the cost of steel-forming tools. Ultra-high-performance concrete (UHPC) tools offer a cheap and fast alternative to conventional steel-forming tools.

View Article and Find Full Text PDF

A Numerical Study on the Crashworthiness of Corrugated Conical Tubes with Small Semi-Apical Angles and Their Influence Mechanism.

Biomimetics (Basel)

January 2025

School of Civil Engineering, Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 211189, China.

To develop a new type of biomimetic single-cell and multi-cell energy-absorbing box (tube) featuring conical tubes at the intersection of cell walls, it is necessary to address the issue of large bottom-space requirements in current conical energy-absorbing tubes with superior crashworthiness due to their large semi-apical angles. This study proposes adding corrugations to conical tubes with small semi-apical angles and modifying the bottom by replacing the last one or two inclined corrugations with vertical ones. Finite element simulation results show that, compared to conventional conical tubes, adding corrugations reduces the optimal semi-apical angle of conical tubes by 5°, with the optimal range being 5-10°.

View Article and Find Full Text PDF

The growing importance of state assessments in civil engineering has led to intensive research into the development of damage identification methods based on vibrations. Natural frequencies and modal shapes have garnered great interest because modal parameters are invariant of structure. Moreover, thanks to the global nature of modal parameters, their variations are not limited to the location of the damage.

View Article and Find Full Text PDF

Timber-concrete composites are established structural elements to combine the advantageous properties of both materials by connecting them. In this work, an innovative flexible adhesive connection in different configurations is investigated. Load-bearing capacity, stiffness, and the failure modes were first experimentally investigated by performing push-out tests.

View Article and Find Full Text PDF

Risk-based bridge life cycle cost and environmental impact assessment considering climate change effects.

Sci Rep

January 2025

Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

To enhance sustainability and resilience against climate change in infrastructure, a quantitative evaluation of both environmental impact and cost is important within a life cycle framework. Climate change effects can lead performance deterioration in bridge components during their operational phase, highlighting the necessity for a risk-based evaluation process aligned with maintenance strategies. This study employs a two-phase life cycle assessments (LCA) framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!