Development of a 3D Anthropomorphic Phantom Generator for Microwave Imaging Applications of the Head and Neck Region.

Sensors (Basel)

Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.

Published: April 2020

The development of 3D anthropomorphic head and neck phantoms is of crucial and timely importance to explore novel imaging techniques, such as radar-based MicroWave Imaging (MWI), which have the potential to accurately diagnose Cervical Lymph Nodes (CLNs) in a neoadjuvant and non-invasive manner. We are motivated by a significant diagnostic blind-spot regarding mass screening of LNs in the case of head and neck cancer. The timely detection and selective removal of metastatic CLNs will prevent tumor cells from entering the lymphatic and blood systems and metastasizing to other body regions. The present paper describes the developed phantom generator which allows the anthropomorphic modelling of the main biological tissues of the cervical region, including CLNs, as well as their dielectric properties, for a frequency range from 1 to 10 GHz, based on Magnetic Resonance images. The resulting phantoms of varying complexity are well-suited to contribute to all stages of the development of a radar-based MWI device capable of detecting CLNs. Simpler models are essential since complexity could hinder the initial development stages of MWI devices. Besides, the diversity of anthropomorphic phantoms resulting from the developed phantom generator can be explored in other scientific contexts and may be useful to other medical imaging modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180700PMC
http://dx.doi.org/10.3390/s20072029DOI Listing

Publication Analysis

Top Keywords

phantom generator
12
head neck
12
development anthropomorphic
8
microwave imaging
8
developed phantom
8
development
4
anthropomorphic phantom
4
generator microwave
4
imaging
4
imaging applications
4

Similar Publications

Objectives: The purpose of this study was to investigate the fundamental properties of spot-scanning proton beams and compare them to Monte Carlo (MC) simulations, both with and without CT calibration, using spatially diverse combinations of materials.

Methods: A heterogeneous phantom was created by spatially distributing titanium, wax, and thermocol to generate six scenarios of heterogeneous combinations. Proton pencil beams ranging in energy from 100 to 226.

View Article and Find Full Text PDF

IPEM topical report: guidance on 3D printing in radiotherapy.

Phys Med Biol

January 2025

Department of Physics, UCLH NHS Foundation Trust, 250 Euston Road,, London, NW1 2PG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

There has been an increase in the availability and utilization of commercially available 3D printers in radiotherapy, with applications in phantoms, brachytherapy applicators, bolus, compensators, and immobilization devices. Additive manufacturing in the form of 3D printing has the advantage of rapid production of personalized patient specific prints or customized phantoms within a short timeframe. One of the barriers to uptake has been the lack of guidance.

View Article and Find Full Text PDF

Expression of beam hardening artifacts on horizontally stitched cone-beam computed tomography images.

Imaging Sci Dent

December 2024

Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.

Purpose: This study was performed to evaluate the expression of beam hardening artifacts generated by high atomic number materials in stitched cone-beam computed tomography (CBCT) images, compared to the traditional acquisition mode.

Materials And Methods: CBCT volumes were acquired using an acrylic resin phantom embedded with pairs of cylinders made from amalgam dental alloy, cobalt-chromium alloy, gutta-percha, titanium, and zirconium. These cylinders were placed within the overlapping zones of the stitching reconstruction area.

View Article and Find Full Text PDF

Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.

J Med Imaging (Bellingham)

January 2025

University of Houston, Department of Biomedical Engineering, Houston, Texas, United States.

Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.

View Article and Find Full Text PDF

Objectives: We investigated image quality and standardized uptake values (SUVs) for different lesion sizes using clinical data generated by F-FDG-prone breast silicon photomultiplier (SiPM)-based positron emission tomography/computed tomography (PET/CT).

Methods: We evaluated the effect of point-spread function (PSF) modeling and Gaussian filtering (Gau) and determined the optimal reconstruction conditions. We compared the signal-to-noise ratio (SNR), contrast, %coefficient of variation (%CV), SUV, and Likert scale score between ordered-subset expectation maximization (OSEM) time-of-flight (TOF) and OSEM+TOF+PSF in phantom and clinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!