Double strand break (DSB) repair mechanisms guard genome integrity and their deterioration causes genomic instability. Common and rare fragile sites (CFS and RFS, respectively) are particularly vulnerable to instability, and there is an inverse correlation between fragile site (FS) expression and DSB repair protein levels. Upon DSB repair dysfunction, genes residing at these sites are at greater risk of deregulation compared to genes located at non-FS. In this regard, it remains enigmatic why the incidence of miRNA genes at FS is higher compared to non-FS. Herein, using bioinformatics, we examined whether miRNA genes localized at FS inhibit components of DSB repair pathways and assessed their effects on cancer. We show that such miRNAs over-accumulate in RFS, and that FRAXA, which is expressed in Fragile X syndrome, is a conserved hotspot for miRNAs inhibiting DSB repair. Axes of FRAXA-residing miRNAs/DSB repair targets affect survival in a cancer type-specific manner. Moreover, copy number variations in the region encompassing these miRNA genes discriminate survival between male and female patients. Given that, thus far, only CFS have been considered relevant for carcinogenesis, our data are the first to associate RFS with cancer, through the impairment of DSB repair by the FRAXA-residing miRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226545PMC
http://dx.doi.org/10.3390/cancers12040876DOI Listing

Publication Analysis

Top Keywords

dsb repair
24
mirna genes
12
double strand
8
repair
8
repair pathways
8
rare fragile
8
fragile sites
8
dsb
6
genes
5
mirnas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!