Background And Objective: Accurate retinal vessel segmentation is often considered to be a reliable biomarker of diagnosis and screening of various diseases, including cardiovascular diseases, diabetic, and ophthalmologic diseases. Recently, deep learning (DL) algorithms have demonstrated high performance in segmenting retinal images that may enable fast and lifesaving diagnoses. To our knowledge, there is no systematic review of the current work in this research area. Therefore, we performed a systematic review with a meta-analysis of relevant studies to quantify the performance of the DL algorithms in retinal vessel segmentation.
Methods: A systematic search on EMBASE, PubMed, Google Scholar, Scopus, and Web of Science was conducted for studies that were published between 1 January 2000 and 15 January 2020. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) procedure. The DL-based study design was mandatory for a study's inclusion. Two authors independently screened all titles and abstracts against predefined inclusion and exclusion criteria. We used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool for assessing the risk of bias and applicability.
Results: Thirty-one studies were included in the systematic review; however, only 23 studies met the inclusion criteria for the meta-analysis. DL showed high performance for four publicly available databases, achieving an average area under the ROC of 0.96, 0.97, 0.96, and 0.94 on the DRIVE, STARE, CHASE_DB1, and HRF databases, respectively. The pooled sensitivity for the DRIVE, STARE, CHASE_DB1, and HRF databases was 0.77, 0.79, 0.78, and 0.81, respectively. Moreover, the pooled specificity of the DRIVE, STARE, CHASE_DB1, and HRF databases was 0.97, 0.97, 0.97, and 0.92, respectively.
Conclusion: The findings of our study showed the DL algorithms had high sensitivity and specificity for segmenting the retinal vessels from digital fundus images. The future role of DL algorithms in retinal vessel segmentation is promising, especially for those countries with limited access to healthcare. More compressive studies and global efforts are mandatory for evaluating the cost-effectiveness of DL-based tools for retinal disease screening worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231106 | PMC |
http://dx.doi.org/10.3390/jcm9041018 | DOI Listing |
Vestn Oftalmol
December 2024
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
Peripapillary pachychoroid syndrome (PPS) is a recently described condition, classified within the pachychoroid disease spectrum characterized by focal or diffuse thickening of the choroid due to dilation of choroidal vessels in the Haller's layer (pachyvessels), thinning of the choriocapillaris and the Sattler's layer, and accompanied by increased choroidal permeability and damage to the retinal pigment epithelium. Unlike other pachychoroid diseases that involve changes in the central retina, PPS presents with choroidal thickening and intra- or subretinal fluid located nasally in the macular region, near the optic disc. This review aims to summarize and analyze current data on the clinical features, pathogenesis, and treatment options for PPS found in the literature.
View Article and Find Full Text PDFInflammation
December 2024
Shenzhen Eye Hospital, Shenzhen Eye Institute, JinanUniversity, 18 Zetian Road, Shenzhen, 518040, Guangdong, China.
Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
We compared chorioretinal microvascular of Slow Coronary Flow Phenomenon (SCFP) patients using Optical Coherence Tomography Angiography (OCTA) to healthy controls. We recruited 21 patients from September 2023 until January 2024 from two referral centers. We enrolled 21 age-sex-matched controls retrospectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ophthalmology, Jinshan Hospital of Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, China.
To observe the structural changes of retina and choroid in patients with different degrees of myopia. We recruited 219 subjects with different degrees of myopia for best corrected visual acuity, computer refraction, intraocular pressure, axial length (AL), optical coherence tomography (OCT) imaging, and other examinations. Central macular retinal thickness (CRT), subfoveal choroidal thickness (SFCT), nasal retinal thickness (NRT), temporal retinal thickness (TRT), nasal choroidal thickness (NCT) and temporal choroidal thickness (TCT) were measured by optical coherence tomography.
View Article and Find Full Text PDFMicrocirculation
January 2025
Eye Research Center, The Five Senses Health Institute, Moheb Kowsar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Purpose: To assess the colocalization of ellipsoid zone (EZ) disruption with nonperfusion in choriocapillaris (CC), retinal superficial capillary plexus (SCP), and deep capillary plexus (DCP) in diabetic patients using en face optical coherence tomography (OCT) and OCT angiography (OCTA).
Methods: Macular OCT and OCTA scans (3 × 3 mm) of 41 patients with diabetic retinopathy were obtained using an RTVue XR Avanti instrument. After correcting the shadow artifacts, EZ integrity was assessed in the en face OCT slab using the Gaussian mixture model clustering method compared with the corresponding EZ en face OCT of 11 age-matched normal patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!