Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in .

Plants (Basel)

State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.

Published: April 2020

AI Article Synopsis

Article Abstract

Increasing soil salinity suppresses both productivity and fiber quality of cotton, thus, an appropriate management approach needs to be developed to lessen the detrimental effect of salinity stress. This study assessed two cotton genotypes with different salt sensitivities to investigate the possible role of nitrogen supplementation at the seedling stage. Salt stress induced by sodium chloride (NaCl, 200 mmol·L) decreased the growth traits and dry mass production of both genotypes. Nitrogen supplementation increased the plant water status, photosynthetic pigment synthesis, and gas exchange attributes. Addition of nitrogen to the saline media significantly decreased the generation of lethal oxidative stress biomarkers such as hydrogen peroxide, lipid peroxidation, and electrolyte leakage ratio. The activity of the antioxidant defense system was upregulated in both saline and non-saline growth media as a result of nitrogen application. Furthermore, nitrogen supplementation enhanced the accumulation of osmolytes, such as soluble sugars, soluble proteins, and free amino acids. This established the beneficial role of nitrogen by retaining additional osmolality to uphold the relative water content and protect the photosynthetic apparatus, particularly in the salt-sensitive genotype. In summary, nitrogen application may represent a potential strategy to overcome the salinity-mediated impairment of cotton to some extent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238023PMC
http://dx.doi.org/10.3390/plants9040450DOI Listing

Publication Analysis

Top Keywords

nitrogen supplementation
12
nitrogen
8
antioxidant defense
8
defense system
8
role nitrogen
8
nitrogen application
8
nitrogen enhances
4
enhances salt
4
salt tolerance
4
tolerance modulating
4

Similar Publications

Preparation and evaluation of MSR-1 bioinoculant on the growth and productivity of (L.) R. Wilczek.

3 Biotech

February 2025

Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India.

Unlabelled: Recently, there has been a growing interest in the application of beneficial microorganisms to enhance crop performance.  (MSR-1) are spiral-shaped, gram-negative bacteria that exhibit magnetotaxis with the help of magnetosomes (iron oxide or iron sulphide). They have exhibited biomedical and environmental applications; however, the agricultural utilization of these strains is yet to be explored.

View Article and Find Full Text PDF

U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined.

View Article and Find Full Text PDF

Objective: This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.

Methods: A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation.

View Article and Find Full Text PDF

Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.

View Article and Find Full Text PDF

Exogenous nitrogen supplementation for the bioremediation of petroleum-contaminated soils is a widely adopted and effective environmentally friendly strategy. However, the mechanism by which varying nitrogen dosages affect hydrocarbon degradation pathways remains unclear. This study conducted bioremediation on soil with a total petroleum hydrocarbon (TPH) content of 17,090 mg/kg over 210 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!