Quantifying the Effects of Visual Road Information on Drivers' Speed Choices to Promote Self-Explaining Roads.

Int J Environ Res Public Health

The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China.

Published: April 2020

Roads should deliver appropriate information to drivers and thus induce safer driving behavior. This concept is also known as "self-explaining roads" (SERs). Previous studies have demonstrated that understanding how road characteristics affect drivers' speed choices is the key to SERs. Thus, in order to reduce traffic casualties via engineering methods, this study aimed to establish a speed decision model based on visual road information and to propose an innovative method of SER design. It was assumed that driving speed is determined by road geometry and modified by the environment. Lane fitting and image semantic segmentation techniques were used to extract road features. Field experiments were conducted in Tibet, China, and 1375 typical road scenarios were picked out. By controlling variables, the driving speed stimulated by each piece of information was evaluated. Prediction models for geometry-determined speed and environment-modified speed were built using the random forest algorithm and convolutional neural network. Results showed that the curvature of the right boundary in "near scene" and "middle scene", and the density of roadside greenery and residences play an important role in regulating driving speed. The findings of this research could provide qualitative and quantitative suggestions for the optimization of road design that would guide drivers to choose more reasonable driving speeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177682PMC
http://dx.doi.org/10.3390/ijerph17072437DOI Listing

Publication Analysis

Top Keywords

driving speed
12
visual road
8
speed
8
drivers' speed
8
speed choices
8
road
7
driving
5
quantifying effects
4
effects visual
4
road drivers'
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!