An intense source for cold cluster ions of a specific composition.

Rev Sci Instrum

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.

Published: March 2020

The demand for nanoscale materials of ultra-high purity and narrow size distribution is addressed. Clusters of Au, C, HO, and serine are produced inside helium nanodroplets using a combination of ionization, mass filtering, collisions with atomic or molecular vapor, and electrostatic extraction, in a specific and novel sequence. The helium droplets are produced in an expansion of cold helium gas through a nozzle into vacuum. The droplets are ionized by electron bombardment and subjected to a mass filter. The ionic and mass-selected helium droplets are then guided through a vacuum chamber filled with atomic or molecular vapor where they collide and "pick up" the vapor. The dopants then agglomerate inside the helium droplets around charge centers to singly charged clusters. Evaporation of the helium droplets is induced by collisions in a helium-filled radio frequency (RF)-hexapole, which liberates the cluster ions from the host droplets. The clusters are analyzed with a time-of-flight mass spectrometer. It is demonstrated that using this sequence, the size distribution of the dopant cluster ions is distinctly narrower compared to ionization after pickup. Likewise, the ion cluster beam is more intense. The mass spectra show, as well, that ion clusters of the dopants can be produced with only few helium atoms attached, which will be important for messenger spectroscopy. All these findings are important for the scientific research of clusters and nanoscale materials in general.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5133112DOI Listing

Publication Analysis

Top Keywords

helium droplets
16
cluster ions
12
nanoscale materials
8
size distribution
8
inside helium
8
atomic molecular
8
molecular vapor
8
helium
7
droplets
6
clusters
5

Similar Publications

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.

View Article and Find Full Text PDF
Article Synopsis
  • CH cations were created in helium droplets and studied using infrared laser spectroscopy, leading to an understanding of their behavior.
  • The infrared bands detected were associated with the C isomer of the CH cation, but the rotational structure was unclear, suggesting a significant reduction in rotational constants when in helium nanodroplets.
  • Additionally, the research included isotopically substituted CH cations, which displayed a clearer rotational structure, revealing that the rotational constant A is about 1.17 times smaller in helium compared to the gas phase.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!