A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel imaging technique for non-destructive metrology and characterization of ultraviolet-sensitive polymeric microstructures. | LitMetric

The negative photoresist SU-8 has attracted much research interest as a structural material for creating complex three-dimensional (3D) microstructures incorporating hidden features such as microchannels and microwells for a variety of lab-on-a-chip and biomedical applications. Achieving desired topological and dimensional accuracy in such SU-8 microstructures is crucial for most applications, but existing methods for their metrology, such as scanning electron microscopy (SEM) and optical profilometry, are not practical for non-destructive measurement of hidden features. This paper introduces an alternative imaging modality for non-destructively characterizing the features and dimensions of SU-8 microstructures by measuring their transmittance of 365 nm ultraviolet (UV) light. Here, depth profiles of SU-8 3D microstructures and thin films are determined by relating UV transmittance and the thicknesses of SU-8 samples imaged in the UV spectrum through the Beer-Lambert law applied to the images on a pixel-by-pixel basis. This technique is validated by imaging the UV transmittance of several prototype SU-8 3D microstructures, including those comprising hidden hollow subsurface features, as well as SU-8 thin-films, and verifying the measured data through SEM. These results suggest that UV transmittance imaging offers a cost-effective, non-destructive technique to quickly measure and identify SU-8 microstructures with surface and hidden subsurface features unlike existing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5126957DOI Listing

Publication Analysis

Top Keywords

su-8 microstructures
20
su-8
8
hidden features
8
subsurface features
8
microstructures
7
features
5
novel imaging
4
imaging technique
4
technique non-destructive
4
non-destructive metrology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!