A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a novel calorimetry setup based on metallic paramagnetic temperature sensors. | LitMetric

Development of a novel calorimetry setup based on metallic paramagnetic temperature sensors.

Rev Sci Instrum

Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.

Published: March 2020

We have developed a new micro-fabricated platform for the measurement of the specific heat of low heat capacity mg-sized metallic samples, such as superconductors, down to temperatures of as low as 10 mK. It addresses challenging aspects of setups of this kind such as the thermal contact between the sample and platform, the thermometer resolution, and an addenda heat capacity exceeding that of the samples of interest (typically nJ/K at 20 mK). The setup allows us to use the relaxation method, where the thermal relaxation following a well defined heat pulse is monitored to extract the specific heat. The sample platform (5 × 5 mm) includes a micro-structured paramagnetic Ag:Er temperature sensor, which is read out by a dc-superconducting quantum interference device via a superconducting flux transformer. In this way, a relative temperature precision of 30 nK/Hz can be reached, while the addenda heat capacity falls well below 0.5 nJ/K for T < 300 mK. A gold-coated mounting area (4.4 × 3 mm) is included to improve the thermal contact between the sample and platform.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5139090DOI Listing

Publication Analysis

Top Keywords

heat capacity
12
sample platform
12
specific heat
8
thermal contact
8
contact sample
8
addenda heat
8
heat
6
development novel
4
novel calorimetry
4
calorimetry setup
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!