Achieving high photocatalytic activity of titania-graphene composites calls for well-controlled titania size and efficient charge transfer interfaces. However, it is rather difficult because of easy restacking of graphene sheets and random nucleation and growth of titania nanoparticles in solution. Here, we reported a facile way to control the TiO sizes and interfaces by localizing the nucleation and growth of titania on graphene sheets, which prohibits both restacking of graphene and random growth of TiO. As a result, a composite with controllably less than 10-nm-sized TiO nanoparticles evenly distributed on thin graphene sheets was achieved. Thanks to the small size of titania and efficient charge transfer interfaces, the TiO/graphene composite exhibits a significant enhancement of photocatalytic H evolution activity, reaching 1.35 mmol g h. Furthermore, the composite also shows high photocatalytic activity on dye degradation under visible light illumination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c00297 | DOI Listing |
Sci Rep
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Federal University of Uberlândia, Chemistry Institute, Uberlândia, MG, 38400-902, Brazil.
The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.
The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!