In this communication, we report a theoretical attempt to understand the involvement of the electronic structure in determining the optical and thermal properties of C17Ge germagraphene, a buckled two-dimensional material. The structure is found to be a direct bandgap semiconductor with low carrier effective mass. Our study has revealed the effect of spin-orbit coupling on the band structure, and the appearance of spin Hall current on the material. The selectively high blue to ultraviolet light absorption, and a refractive index comparable to flint glass, open up the possible applicability of this material for optical devices. From an electronic structural point of view, we investigate the reason behind its moderately high Seebeck coefficient and power factor which are comparable to traditional thermoelectric materials. Besides its narrow bandgap and relatively smaller work function of 4.361 eV, compared to graphene (4.390 eV) and germanene (4.682 eV), ensures easier removal of electrons from the surface. This material turns out to be an excellent alternative for future semiconductor applications, from optical to thermal devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00884b | DOI Listing |
BMC Cancer
January 2025
Basic Research Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China.
Background: CD3 + CD20 + T cells (T cells) are a subset of lymphocytes in the human body that are associated with inflammation. They originate from T cells interacting with B cells, and their levels are abnormally elevated in individuals with immune disorders, as well as in some cancer patients. The interplay between tumor immunity and inflammation is intricate, yet the specific involvement of T cells in local tumor immunity remains uncertain, with limited research on their subtypes.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233, Gdansk, Poland.
Computational tools, particularly electromagnetic (EM) solvers, are now commonplace in antenna design. While ensuring reliability, EM simulations are time-consuming, leading to high costs associated with EM-driven procedures like parametric optimization or statistical design. Various techniques have been developed to address this issue, with surrogate modeling methods garnering particular attention due to their potential advantages.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Communications and Electronics, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
This paper presents an all-optical 4 × 2 encoder based on graphene-plasmonic waveguides for operation in the wavelength range of 8-12 μm. The basic plasmonic waveguide consists of a silicon (Si) strip and a graphene sheet supported by two dielectric ridges. Surface plasmon polaritons (SPPs) are stimulated in the spatial gap between the graphene sheet and the Si strip.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Harmonic generation, a notable non-linear phenomenon, has promising applications in information processing. For spin-waves in ferromagnetic materials, great progress has been made in the generation higher harmonics, however probing the coherence of these higher harmonics is challenging. Here, using in-situ diamond sensors, we study the coherent harmonic generation of spin waves in a soft ferromagnet.
View Article and Find Full Text PDFNat Commun
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!