Great attention has been paid to cytotoxic proteins (e.g., ribosome-inactivating proteins, RIPs) possessing high anticancer activities; unlike small drugs, cytotoxic proteins can effectively retain inside the cells and avoid drug efflux mediated by multidrug resistance transporters due to the large-size effect. However, the clinical translation of these proteins is severely limited because of various biobarriers that hamper their effective delivery to tumor cells. Hence, in order to overcome these barriers, many smart drug delivery systems (DDS) have been developed. In this review, we will introduce two representative type I RIPs, trichosanthin (TCS) and gelonin (Gel), and overview the major biobarriers for protein-based cancer therapy. Finally, we outline advances on the development of smart DDS for effective delivery of these cytotoxic proteins for various applications in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089019 | PMC |
http://dx.doi.org/10.1021/acsptsci.9b00087 | DOI Listing |
Cell Commun Signal
January 2025
Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.
Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.
Cell Commun Signal
January 2025
Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
Ethnopharmacological Relevance: As an important component of the cell wall of Gram-negative bacteria, lipopolysaccharide (LPS) is an important inducer of inflammation in humans. Smilax china L. is known for its diverse bioactive functions, particularly its anti-inflammatory effects.
View Article and Find Full Text PDFToxicology
January 2025
School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:
Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!