Food additives and microbiota.

North Clin Istanb

Department of Medical Microbiology, Alanya Alaaddin Keykubat University Faculty of Medicine, Antalya, Turkey.

Published: July 2019

The use of food additives in food production is inevitable in this modern world. Although only a safe amount of food additives is approved, their safety has always been questioned. To our knowledge, the effects of food additives on microbiota have not been investigated in a detailed manner in the literature so far. In this review, the effects of artificial sweeteners, sugar alcohols, emulsifiers, food colorants, flavor enhancers, thickeners, anticaking agents, and preservatives on microbiota were reviewed. Even though most of the results illustrated negative outcomes, few of them showed positive effects of food additives on the microbiota. Although it is difficult to obtain exact results due to differences in experimental animals and models, said the findings suggest that nonnutritive synthetic sweeteners may lead to glucose intolerance by affecting microbiota and a part of sugar alcohols show similar effects like probiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117642PMC
http://dx.doi.org/10.14744/nci.2019.92499DOI Listing

Publication Analysis

Top Keywords

food additives
20
additives microbiota
12
effects food
8
sugar alcohols
8
food
7
microbiota
5
microbiota food
4
additives
4
additives food
4
food production
4

Similar Publications

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

β-cyclodextrin polymers as a new sorbent for solid-phase extraction of xenobiotics in Urine.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %.

View Article and Find Full Text PDF

Smartphone-Assisted Fluorescence Determination of Inorganic Phosphorus Using a Samarium Metal-Organic Framework.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.

Inorganic phosphori are widely used in food, whose quantitative detection method is of significance. This work presents a Sm-DDB (HDDB = 1,3-di(3',5'-dicarboxylphenyl)benzene), which acts as a ratiometric fluorescence sensor to monitor PO, HPO, and (PO) with high sensitivity. The determination factors of pH, MOF dosage, and fluorescence response time are optimized as 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!