A Calixarene Promotes Disaggregation and Sensing Performance of Carboxyphenyl Porphyrin Films.

ACS Omega

Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville 41013, Spain.

Published: March 2020

The aggregation of a free base porphyrin, -tetrakis(4-carboxyphenyl)porphyrin and its Zn(II) derivative have been studied at the air/water interface in the presence of a --butylcalyx[8]arene matrix. The mixed Langmuir films were obtained either by premixing the compounds (cospreading) or by sequential addition. The negative deviation from the additivity rule of the cospread films is indicative of a comparatively good miscibility that was further confirmed by Brewster angle microscopy. The images of the cospread mixed films showed a more homogeneous morphology in comparison with those of pure porphyrin that is attributed to a deeper and earlier self-aggregation state at the interface of the latter. These results were similar for both porphyrins and revealed the disaggregating effect of the calixarene matrix. The orientation and association of the porphyrins were studied by UV-visible reflection spectroscopy at the interface. A different aggregation behavior can be inferred from the resulting spectra, and a higher orientational freedom was observed when the molecules were less aggregated in mixed cospreaded films. The disaggregating effect was retained when the films were transferred to solid supports as demonstrated by UV-visible spectroscopy. Finally, the potential use of these Langmuir-Blodgett films as optical gas sensors was tested against ammonia and amine vapors. The changes in the spectrum in the presence of the volatile compounds are higher for the Zn-porphyrin. The presence of calixarene enhances the sensor response due to the higher accessibility of volatiles to disaggregated porphyrins in the mixed films. The resulting changes were mapped into a numerical matrix that can be transformed into a color pattern to easily discriminate among these gases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114168PMC
http://dx.doi.org/10.1021/acsomega.9b03612DOI Listing

Publication Analysis

Top Keywords

films
8
mixed films
8
calixarene promotes
4
promotes disaggregation
4
disaggregation sensing
4
sensing performance
4
performance carboxyphenyl
4
carboxyphenyl porphyrin
4
porphyrin films
4
films aggregation
4

Similar Publications

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Temperature Dependence on Microstructure, Crystallization Orientation, and Piezoelectric Properties of ZnO Films.

Sensors (Basel)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!