A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). | LitMetric

Cavitation refers to the formation and collapse of vapor bubbles near solid boundaries in high-speed flows, such as ship propellers and pumps. During this process, cavitation bubbles focus fluid energy on the solid surface by forming high-speed jets, leading to damage and downtime of machinery. In response, numerous surface treatments to counteract this effect have been explored, including perfluorinated coatings and surface hardening, but they all succumb to cavitation erosion eventually. Here, we report on biomimetic gas-entrapping microtextured surfaces (GEMS) that robustly entrap air when immersed in water regardless of the wetting nature of the substrate. Crucially, the entrapment of air inside the cavities repels cavitation bubbles away from the surface, thereby preventing cavitation damage. We provide mechanistic insights by treating the system as a potential flow problem of a multi-bubble system. Our findings present a possible avenue for mitigating cavitation erosion through the application of inexpensive and environmentally friendly materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101208PMC
http://dx.doi.org/10.1126/sciadv.aax6192DOI Listing

Publication Analysis

Top Keywords

cavitation erosion
12
mitigating cavitation
8
biomimetic gas-entrapping
8
gas-entrapping microtextured
8
microtextured surfaces
8
surfaces gems
8
cavitation bubbles
8
cavitation
6
erosion biomimetic
4
gems cavitation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!