Diverse Role of TGF-β in Kidney Disease.

Front Cell Dev Biol

Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Published: February 2020

Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093020PMC
http://dx.doi.org/10.3389/fcell.2020.00123DOI Listing

Publication Analysis

Top Keywords

kidney disease
12
inflammation fibrosis
12
renal fibrosis
12
renal inflammation
12
diverse role
8
role tgf-β
8
regulates renal
8
smad3-dependent non-coding
8
non-coding rnas
8
regulate renal
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Verification of an alteration in the gut microbiota that increases nutritional risk in patients on hemodialysis.

Biosci Microbiota Food Health

July 2024

Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.

View Article and Find Full Text PDF

Objective: This research project aimed to identify and analyze the top 30 drugs most commonly associated with kidney stone formation using data from the U.S. Food and Drug Administration's Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

Background: Patients with end-stage kidney disease (ESKD) have high rates of gastrointestinal bleeding due to several risk factors including platelet dysfunction, comorbid illness, and use of antiplatelet medications. Proton pump inhibitors (PPIs) reduce gastrointestinal bleeding and are recommended for high-risk patients such as those prescribed dual antiplatelet therapy (DAPT). Whether inappropriate duration of DAPT therapy and/or lack of appropriate PPI use contribute to the known elevated risk of gastrointestinal bleeding in hemodialysis patients is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!