Prostate cancer is the most common non-cutaneous cancer in men in the United States and is the second most common cause of cancer deaths after lung cancer in men. Despite all advances in the field of prostate cancer imaging and treatment, currently, it is sub-optimally responsive to all available treatment options. Radioimmunotherapy with a monoclonal antibody (mAb), J591, has shown promising results in the treatment of prostate cancer. J591 is a deimmunized mAb that targets the extracellular domain of prostate-specific membrane antigen (PSMA), a surface-bound and internalizing glycoprotein that is upregulated in prostate cancer. Phase I/II clinical trials have shown accurate tumor targeting, biochemical and radiographic responses, and increased overall survival in patients with mCRPC with tolerable, predictable, and reversible myelotoxicity. Ongoing studies focus on improving the therapeutic index of radiolabeled J591. Herein, the literature on published clinical trials involving therapeutic J591 conjugated to b-emitter, lutetium-177 for mCRPC, is sequentially reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100619PMC
http://dx.doi.org/10.7759/cureus.7107DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
membrane antigen
8
monoclonal antibody
8
cancer
8
cancer men
8
clinical trials
8
j591
5
prostate
5
review lutetium-177-labeled
4
lutetium-177-labeled anti-prostate-specific
4

Similar Publications

Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management.

Crit Rev Oncol Hematol

December 2024

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy.

View Article and Find Full Text PDF

A controlled study of use and effectiveness of phosphodiesterase-5 inhibitors in long-term survivors after curative radiotherapy for prostate cancer (PCa).

Radiother Oncol

December 2024

Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway. Electronic address:

Background And Purpose: We lack population-based data on the use and effectiveness of phosphodiesterase- 5inhibitors (PDE-5Is) in post-radiotherapy long-term prostate cancer survivors (PCaSs). In this cross-sectional survey performed 9 years after curative radiotherapy we explored PDE-5I use and the drugs'effectiveness in 1,092 nine-year PCaSs responding to the sexual items of EPIC-26. The findings from PCaSs were compared to those from 2,847 age-similar men from the general population (Norms).

View Article and Find Full Text PDF

Verification imaging in prostate MR-only radiotherapy: Are fiducial markers necessary?

Radiography (Lond)

December 2024

Newcastle Upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle Upon Tyne, United Kingdom; Newcastle University, Translational and Clinical Research Institute, Newcastle Upon Tyne, United Kingdom.

Purpose/objective: MR-only radiotherapy planning exploits the benefits of MRI soft-tissue delineation, whilst negating the registration inaccuracies caused by MRI CT fusion. Fiducial markers have conventionally been used in prostate radiotherapy to reduce on-treatment image matching variability. However, this is an invasive procedure for the patient, and presents technical difficulties in an MR-only pathway as fiducial markers are difficult to visualise on MRI.

View Article and Find Full Text PDF

Drug repositioning in castration-resistant prostate cancer using systems biology and computational drug design techniques.

Comput Biol Chem

December 2024

Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!