Esterified maltodextrins (EMs) were prepared using enzyme-catalyzed reaction of maltodextrin (DE of 16 and 9) and palmitic acid. The emulsion stabilization mechanism was investigated of a combination of Tween 80 and EM in oil-in-water emulsion to determine interfacial tension, ζ-potential, non-adsorbed Tween 80 in centrifuged-serum of emulsion, and fluoresced microstructure. The interfacial tension and non-adsorbed Tween 80 content of combination of Tween 80 and EM-stabilized oil-in-water emulsions were closed to those of sole Tween 80-stabilized emulsion. The ζ-potential of sole Tween 80-stabilzed emulsion had a small positive charge but ζ-potential changed to small negative charge as EM was added into Tween 80-stabilzed emulsion. Fluorescence microstructure confirmed that EM was adsorbed on oil droplet surface, stabilized by Tween 80. The mechanism of emulsion stabilization may conclude that Tween 80 was mainly adsorbed at oil surface and EM may interact with Tween 80 to form a double stabilization layer without competitive replacement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105530 | PMC |
http://dx.doi.org/10.1007/s10068-019-00681-x | DOI Listing |
Langmuir
January 2025
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States.
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
This study developed the multifunctional cellulose nanofibers (CNFs) as emulsifier for preparation of antibacterial, ultrastable and non-toxic emulsion. To achieve these properties, CNFs were oxidated using sodium periodate to introduce aldehyde groups, which served as Schiff-base reaction sites for amino groups of polyhexamethylene guanidine (PHMG), yielding PHMG-grafted CNFs (PCNFs). The modified CNFs retained good emulsification ability while acquiring antibacterial properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China. Electronic address:
Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France.
Terpene-based amphiphilic copolymers have been designed as biobased stabilizers for waterborne latex synthesized by miniemulsion or emulsion polymerization of 1,3-diene terpene monomers. The pH-responsive P(AA--My) amphiphilic copolymers were synthesized by nitroxide-mediated radical copolymerization of β-myrcene (My) and acrylic acid (AA) with reactivity ratios of = 0.24 ± 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!