Comprehensive analysis to determine the differences of solar salt produced in South Korea and China.

Food Sci Biotechnol

National Forensic Service, 10 Ipchunro, Wonju, Gangwon-Do 26460 South Korea.

Published: March 2020

Food fraud, including adulteration, addition, tampering, and misrepresentation of food ingredients and packaging for improper economic profit, has been global concerns affecting public health and safety. In South Korea, counterfeit expression of solar salt has been a problem causing improper economic profit, especially for those products produced from China, but labeled as 'domestics'. In this study, we were tried to discriminate geographical origins of solar salt between South Korea and China through various analytical techniques, the determination of moisture and sodium chloride contents, multi-elemental analysis, and isotope analysis. With the application of a statistical analysis, more than 93.3% of discrimination capability of positive classification was achieved in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105516PMC
http://dx.doi.org/10.1007/s10068-019-00664-yDOI Listing

Publication Analysis

Top Keywords

solar salt
12
south korea
12
korea china
8
improper economic
8
economic profit
8
comprehensive analysis
4
analysis determine
4
determine differences
4
differences solar
4
salt produced
4

Similar Publications

Integrating 16S rRNA Gene Sequencing and Metabolomics Analysis to Reveal the Mechanism of L-Proline in Preventing Autism-like Behavior in Mice.

Nutrients

January 2025

Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Background/objectives: Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior. Effective interventions for the core autistic symptoms are currently limited.

Methods: This study employed a valproic acid (VPA)-induced mouse model of ASD to assess the preventative effects of L-proline supplementation on ASD-like behaviors.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Study on the application of brine mixing method in lithium extraction from Zabuye salt lake, Tibet.

Sci Rep

January 2025

MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.

With the rapid development of new energy industry, the demand for lithium resources continues to rise. The salinity-gradient solar pond (SGSP) technology is used to extract the lithium carbonate from Zabuye salt lake brine in the Tibet Plateau of China. Years of production practice proved that due to the unsatisfactory quality and insufficient amount of lithium-rich brine used to make the SGSP, the yield and grade of lithium concentrate in the solar pond has been seriously affected.

View Article and Find Full Text PDF

Lotus-inspired cellulose-based aerogel with Janus wettability and vertically aligned vessels for salt-rejecting solar seawater purification.

Carbohydr Polym

March 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:

High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.

View Article and Find Full Text PDF

L-Aspartic Acid with Dual Functions: An Eco-Friendly and Affordable Choice to Accelerate High Salinity Brine Utilization.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China.

L-Aspartic acid (L-Asp) poses a dual function, which can affect the evaporation and crystallization process of the high-salinity brine by altering the physical or chemical properties of the salts. MSWI (municipal solid waste incineration) fly ash washing leachate, as a typical high-salinity brine, is utilized here to validate this hypothesis under the simulation guidance. Since L-Asp has stronger adsorption energy on the (110) crystal face of CaCO, L-Asp can facilitate the preferential growth of more valuable vaterite during the softening process (pretreatment before crystallization).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!