Clinical ketosis (CK) and subclinical ketosis (SCK) are associated with lower milk production, lower reproductive performance, an increased culling of cows and an increased probability of other disorders. Quantifying the costs related to ketosis will enable veterinarians and farmers to make more informed decisions regarding the prevention and treatment of the disease. The overall aim of this study was to estimate the combined costs of CK and SCK using assumptions and input variables from a typical Dutch context. A herd level dynamic stochastic simulation model was developed, simulating 385 herds with 130 cows each. In the default scenario there was a CK probability of almost 1% and a SCK probability of 11%. The herds under the no risk scenario had no CK and SCK, while the herds under the high-risk scenario had a doubled probability of CK and SCK compared to the default scenario. The results from the simulation model were used to estimate the annual cash flows of the herds, including the costs related to milk production losses, treatment, displaced abomasum, mastitis, calf management, culling and feed, as well as the returns from sales of milk and calves. The difference between the annual net cash flows of farms in the no risk scenario and the default scenario provides the estimate of the herd level costs of ketosis. Average herd level costs of ketosis (CK and SCK combined) were €3,613 per year for a default farm and €7,371 per year for a high-risk farm. The costs for a single CK case were on average €709 (with 5 and 95 percentiles of €64 and €1,196, respectively), while the costs for a single SCK case were on average €150 (with 5 and 95 percentiles of €18 and €422, respectively) for the default farms. The differences in costs between cases occurred due to differences between cases (e.g., cow culled vs cow not culled, getting another disease vs not getting another disease).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138322 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230448 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!