A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative label-free mass spectrometric analysis of temporal changes in the skeletal muscle proteome after impact trauma in rats. | LitMetric

Proteomics offers the opportunity to identify and quantify many proteins and to explore how they correlate and interact with each other in biological networks. This study aimed to characterize changes in the muscle proteome during the destruction, repair, and early-remodeling phases after impact trauma in male Wistar rats. Muscle tissue was collected from uninjured control rats and rats that were euthanized between 6 h and 14 days after impact injury. Muscle tissue was analyzed using unbiased, data-independent acquisition LC-MS/MS. We identified 770 reviewed proteins in the muscle tissue, 296 of which were differentially abundant between the control and injury groups ( ≤ 0.05). Around 50 proteins showed large differences (≥10-fold) or a distinct pattern of abundance after injury. These included proteins that have not been identified previously in injured muscle, such as ferritin light chain 1, fibrinogen γ-chain, fibrinogen β-chain, osteolectin, murinoglobulin-1, T-kininogen 2, calcium-regulated heat-stable protein 1, macrophage-capping protein, retinoid-inducible serine carboxypeptidase, ADP-ribosylation factor 4, Thy-1 membrane glycoprotein, and ADP-ribosylation factor-like protein 1. Some proteins increased between 6 h and 14 days, whereas other proteins increased in a more delayed pattern at 7 days after injury. Bioinformatic analysis revealed that various biological processes, including regulation of blood coagulation, fibrinolysis, regulation of wound healing, tissue regeneration, acute inflammatory response, and negative regulation of the immune effector process, were enriched in injured muscle tissue. This study advances the understanding of early muscle healing after muscle injury and lays a foundation for future mechanistic studies on interventions to treat muscle injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00433.2019DOI Listing

Publication Analysis

Top Keywords

muscle tissue
16
muscle
10
muscle proteome
8
impact trauma
8
injured muscle
8
proteins increased
8
muscle injury
8
proteins
6
injury
6
tissue
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!