Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The investigation of proton localization at a hydrophobic-hydrophilic interface is an important problem in chemical and materials sciences. In this study, protonated benzene (i.e., benzenium ion) and water clusters [BZHW (where = 1-6)] are selected as prototype models to understand the interfacial interactions and proton transfer mechanism between a carbonaceous surface and water molecules. The excess protons can localize in the vicinity of the hydrophobic-hydrophilic interface, and these clusters are stabilized by various kinds of noncovalent interactions. Calculations are carried out using (MP2) and density functional theory B3LYP methods to shed more light on geometries, energetics, and spectral signatures of the protonated species [H(HO)] at the interfaces. These calculations revealed few low-lying isomers, which have not been reported earlier. Scrutiny of the results reveals that proton localization in the hydrophilic environment is more stable than the hydrophobic benzene π-cloud. Furthermore, the occurrence of an O-H···π hydrogen bond significantly influences the O-H···O interactions in the water clusters and also intensively affects the vibrational modes of the Eigen cation. Thus, the aromatic π-clouds can stabilize the Eigen cation and at the same time, a twisted form of Eigen (one O-H···π → two O-H···π) can enhance the proton transfer through the water chain a mechanism. The vibrational spectra of these clusters reveal that there is a large red-shifted frequency for the O-H···O, O-H···π, and O-H···π modes of interaction. The energetic values and vibrational frequencies obtained from the B3LYP method are in close agreement with the MP2 level and experimental values, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b10149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!