Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Textile-based triboelectric nanogenerators (TENG) that can effectively harvest biomechanical energy and sense multifunctional posture and movement have a wide range of applications in next-generation wearable and portable electronic devices. Hence, bulk production of fine yarns with high triboelectric output through a continuous manufacturing process is an urgent task. Here, an ultralight single-electrode triboelectric yarn (SETY) with helical hybridized nano-micro core-shell fiber bundles is fabricated by a facile and continuous electrospinning technology. The obtained SETY device exhibits ultralightness (0.33 mg cm), extra softness, and smaller size (350.66 μm in diameter) compared to those fabricated by conventional fabrication techniques. Based on such a textile-based TENG, high energy-harvesting performance (40.8 V, 0.705 μA cm, and 9.513 nC cm) was achieved by applying a 2.5 Hz mechanical drive of 5 N. Importantly, the triboelectric yarns can identify textile materials according to their different electron affinity energies. In addition, the triboelectric yarns are compatible with traditional textile technology and can be woven into a high-density plain fabric for harvesting biomechanical energy and are also competent for monitoring tiny signals from humans or insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c00524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!