Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This 1:5 case-control study aimed to identify the risk factors of hospital-acquired pressure injuries (HAPIs) and to develop a mathematical model of nomogram for the risk prediction of HAPIs. Data for 370 patients with HAPIs and 1971 patients without HAPIs were extracted from the adverse events and the electronic medical systems. They were randomly divided into two sets: training (n = 1951) and validation (n = 390). Significant risk factors were identified by univariate and multivariate analyses in the training set, followed by a nomogram constructed. Age, independent movement, sensory perception and response, moisture, perfusion, use of medical devices, compulsive position, hypoalbuminaemia, an existing pressure injury or scarring from a previous pressure injury, and surgery sufferings were considered significant risk factors and were included to construct a nomogram. In both of the training and validation sets, the areas of 0.90 under the receiver operating characteristic curves showed excellent discrimination of the nomogram; calibration plots demonstrated a good consistency between the observed probability and the nomogram's prediction; decision curve analyses exhibited preferable net benefit along with the threshold probability in the nomogram. The excellent performance of the nomogram makes it a convenient and reliable tool for the risk prediction of HAPIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949427 | PMC |
http://dx.doi.org/10.1111/iwj.13362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!