Coexistence and food web theory are two cornerstones of the long-standing effort to understand how species coexist. Although competition and predation are known to act simultaneously in communities, theory and empirical study of these processes continue to be developed largely independently. Here, we integrate modern coexistence theory and food web theory to simultaneously quantify the relative importance of predation and environmental fluctuations for species coexistence. We first examine coexistence in a theoretical, multitrophic model, adding complexity to the food web using machine learning approaches. We then apply our framework to a stochastic model of the rocky intertidal food web, partitioning empirical coexistence dynamics. We find the main effects of both environmental fluctuations and variation in predator abundances contribute substantially to species coexistence. Unexpectedly, their interaction tends to destabilise coexistence, leading to new insights about the role of bottom-up vs. top-down forces in both theory and the rocky intertidal ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13482DOI Listing

Publication Analysis

Top Keywords

food web
16
species coexistence
12
coexistence
8
web theory
8
environmental fluctuations
8
rocky intertidal
8
theory
5
quantifying relative
4
relative variation
4
variation predation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!