Interactions between iron surfaces and hydrocarbons are the basis for a wide range of materials synthesis processes and novel applications, including sensing. However, in diesel engines these interactions can lead to deposit formation that reduces performance, lowers efficiency, and increases emissions. Here, we present a global study to understand deposition at iron-hexadecane interfaces. We use a combination of spectroscopy, microscopy, and mass spectrometry to investigate surface reactions, bulk chemistry, and deposition processes. A dynamic equilibrium between the oxidation products, both at the surface and in solution, determines the deposition at the surface. Considering the solution and the surface in parallel, we find that the iron speciation affects the morphology, composition, and quantity of the deposit at the surface, as well as the oxidation of hexadecane. Fe(II) and Fe(III) both promote the decomposition of peroxides-intermediates in the oxidation of hexadecane-but through noncatalytic and catalytic mechanisms, respectively. In contrast, Fe(0) is proposed to initiate hexadecane autoxidation during its oxidation to Fe(III). We find that in all cases, the surfaces exclusively contain Fe(III) following heat treatment with hexadecane. Upon subsequent exposure at room temperature, Fe(III) species are found to promote oxidation; this finding is particularly concerning for hybrid vehicles where longer time periods are expected between engine operation. Our work provides a foundation for the development of strategies that disrupt the role of iron in the degradation of hexadecane to ultimately reduce oxidation and deposition in diesel engines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b22983 | DOI Listing |
J Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation.
View Article and Find Full Text PDFBiol Cell
January 2025
Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, West China Second University Hospital, Renmin Nan Road Third Section, 610041, Chengdu, CHINA.
Organofluorines, particularly those containing trifluoromethyl (CF3) groups, play a critical role in medicinal chemistry. While trifluoromethylation of alkenes provides a powerful synthetic route to construct CF3-containing compounds with broad structural and functional diversity, achieving enantioselective control in these reactions remains a formidable challenge. In this study, we engineered a nonheme iron enzyme, quercetin 2,3-dioxygenase from Bacillus subtilis (BsQueD), for the enantioselective trifluoromethylazidation of alkenes.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Institute of Physics, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!