Operando X-ray absorption spectroscopy was employed to study an active electrocatalyst, hyperfine β-FeOOH nanorods (∅ 3 × 15 nm) surface-modified with amorphous Ni hydroxide. The nearest neighbor structure and valence of Fe ions did not change under water oxidation conditions, while changes in the nearest neighbor ordering of Ni ions and a reversible transition to Ni were observed in accordance with the electrical bias for the reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc00692k | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components.
View Article and Find Full Text PDFChemphyschem
January 2025
Stony Brook University, Chemistry, Department of Chemistry, Stony Brook University, 11794, Stony Brook, UNITED STATES OF AMERICA.
For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.
View Article and Find Full Text PDFLab Chip
January 2025
Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies.
View Article and Find Full Text PDFSmall
January 2025
Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, 38054, France.
With the increasing attention to energy storage solutions, a growing emphasis has been placed on environmentally compatible electrolytes tailored for lithium-ion batteries. This study investigates the surface behavior of Si wafers as model systems cycled with a fluorine-free electrolyte based on lithium bis(oxalato)borate (LiBOB), with and without the additive vinylene carbonate (VC). By utilizing operando X-ray reflectivity (XRR) and ex situ X-ray photoelectron spectroscopy (XPS), the intricate processes involved in solid electrolyte interphase (SEI) formation is elucidated, SiO/Si (de)lithiation, and the impact of the VC additive.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!