A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silk fibroin and hydroxyapatite segmented coating enhances graft ligamentization and osseointegration processes of the polyethylene terephthalate artificial ligament in vitro and in vivo. | LitMetric

The inferior biocompatibility of the polyethylene terephthalate (PET) artificial ligament may lead to poor healing in both the intra-articular part (IAP) and the intraosseous part (IOP) after anterior cruciate ligament (ACL) reconstruction. This study aimed to systematically investigate the effect of silk fibroin (SF) and hydroxyapatite (HA) segmented coating on graft ligamentization and osseointegration processes of the PET ligament. Several techniques including scanning electron microscopy (SEM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and water contact angle (WCA) measurements were carried out to validate the introduction of SF and HA. The segmented coating ligament was assessed both in vitro and in vivo. The results of SEM and cell counting kit-8 (CCK-8) assay revealed that the L929 fibroblasts and MC3T3-E1 osteoblasts exhibited better adhesion and proliferation performance on the PET-SF and PET-HA fibers, respectively, compared to those on the uncoated PET fibers. HA promoted osteogenic differentiation of MC3T3-E1 in terms of the levels of alkaline phosphatase (ALP) activity and calcium deposition. Furthermore, the in vivo study in a beagle ACL reconstruction model demonstrated that the segmented coating could enhance the graft ligamentization and osseointegration processes as indicated by the better tissue infiltration in the IAP and more bone ingrowth in the IOP of the ligament than the control group according to the results of micro-computed tomography (micro-CT), histology, real-time polymerase chain reactions (RT-PCRs) and biomechanical tests. Therefore, the SF and HA segmented coating ligaments may display a great potential application for the clinical augmentation of graft healing in ACL reconstruction surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb01310aDOI Listing

Publication Analysis

Top Keywords

segmented coating
20
graft ligamentization
12
ligamentization osseointegration
12
osseointegration processes
12
acl reconstruction
12
silk fibroin
8
fibroin hydroxyapatite
8
hydroxyapatite segmented
8
polyethylene terephthalate
8
artificial ligament
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!