A novel hybrid nanocomposite formed by RGO flakes, surface functionalized by 1-pyrene carboxylic acid (PCA), densely and uniformly in situ decorated by Au NPs, that are concomitantly coordinated by the PCA carboxylic group, and by an aromatic thiol used as the reducing agent in the synthesis, both ensuring, at the same time, a stable non-covalent NPs anchorage to the RGO flakes, and an efficient interparticle electron coupling along the NP network onto the RGO, is reported. The obtained solution processable hybrid material is used to modify Screen-Printed Carbon Electrodes (SPCEs). The hybrid modified SPCEs, functionalized with a thiolated DNA capture probe, are tested in a streptavidin-alkaline-phosphatase catalyzed assay, for the detection of the biotinylated miRNA-221, and for its determination in spiked human blood serum samples. The proposed genosensor demonstrates a high sensitivity (LOD of 0.7 pM), attesting for a performance comparable with the most effective reported sensors. The enhanced sensitivity is explained in terms of the very fast heterogeneous electron transfer kinetics, the concomitant decrease of the electron transfer resistance at the electrode/electrolyte interface, the high electroactivity and the high surface area of the nanostructured hybrid modified SPCEs that provide a convenient platform for nucleic acid biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8tb02514b | DOI Listing |
Mikrochim Acta
December 2024
College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China.
The development of a sustainable and eco-friendly silver-based hybrid nanocomposite for safe and efficient point-of-use (POU) water disinfection remains a challenge. Herein, a simple and facile approach was proposed for the in situ immobilization of silver nanoparticles (AgNPs) on chitosan-g-poly (sulfobetaine methacrylate) (CS-g-PSBMA) hydrogel beads, which have been achieved via graft copolymerization of sulfobetaine methacrylate along the chitosan chains followed by a drop method. The AgNPs-decorated CS-g-PSBMA hydrogel beads were characterized and their bactericidal efficacy towards Escherichia coli was evaluated concurrently with their anti-biofouling behaviors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.
ZnO nanorods have attracted much attention owing to their outstanding properties for chemical gas sensors. Although they show greater sensing properties than conventional nanoparticulate ZnO, high operation temperature (>250-350 °C) is required for them to work even if precious metals are deposited on them to sensitize their sensing properties. Light irradiation is one solution for overcoming the high operation temperature and the gas selectivity because it assists the oxidation activity on the surface that affects the sensor response.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the B NMR spectra.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
Lithium metal anode is desired by high capacity and low potential toward higher energy density than commercial graphite anode. However, the low-temperature Li metal batteries suffer from dendrite formation and dead Li resulting from uneven Li behaviors of flux with huge desolvation/diffusion barriers, thus leading to short lifespan and safety concern. Herein, differing from electrolyte engineering, a strategy of delocalizing electrons with generating rich active sites to regulate Li desolvation/diffusion behaviors are demonstrated via decorating polar chemical groups on porous metal-organic frameworks (MOFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!