Musculoskeletal disorders such as osteoporosis and rheumatoid arthritis are responsible for more than 25k deaths every year in the European Union and constitute a chronic burden on the individuals who suffer from this condition. There is no medical cure for these diseases and there are many therapies applied which have limited effectiveness and severe side effects over time. Regenerative therapies are being studied as a potential treatment for musculoskeletal diseases and are known for their upgrading effects of the natural healing processes carried out in the human body. It is believed that both strontium and zinc play an essential role in bone and cartilage tissue formation, which has led many scientists to study the effect of including these elements to promote tissue formation and inhibit its resorption. In this review, a deep analysis is undertaken of the most relevant developments in strontium and zinc based regenerative therapies that have occurred in the last five years, taking into consideration only those studies reporting significant progress towards real clinical applications. This review brings up to date the state of the art of strontium and zinc based regenerative therapies as it is believed that both have a promoting effect on tissue formation and have an essential role inhibiting resorption in musculoskeletal disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8tb02738b | DOI Listing |
PeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFFoods
January 2025
Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
Hawthorn ( spp.), a plant widely distributed in temperate and subtropical regions, is valued for its bioactive compounds and diverse health benefits. Known for its remarkable adaptability to various environmental conditions, hawthorn thrives across different altitudes, but these environmental factors, particularly altitude, significantly influence the accumulation of its bioactive substances.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!