Intervertebral disc degeneration (IDD) usually causes lower back and neck pain with a high incidence, which significantly reduces the life quality of patients. However, there is no effective treatment available currently. Our previous study has found that hydrogen sulfide (HS) shows potential therapeutic effect toward IDD. However, the burst release and fast vanishing of HS in the lesion severely limit its further application. Therefore, in this study, we develop a pH and enzyme dual-responsive HS releasing hydrogel system to treat IDD. This hydrogel named Col-JK1 is quite stable under neutral conditions but rapidly releases HS by responding to acidic pH and high matrix metalloproteinases (MMPs) levels in the pathological IDD environment. In vivo study firstly uncovered that Col-JK1 can effectively impede disc degeneration in a puncture-induced IDD rat model. Further in vitro studies reveal that Col-JK1 protects the disc from degeneration by inhibiting the apoptosis of nucleus pulposus (NP) cells and attenuating the degradation of the disc extracellular matrix (ECM). And the protective effect of Col-JK1 is attributed to its anti-inflammatory effects through the regulation of the NF-κB signaling pathway. Thus, our study provides a novel therapeutic option for IDD therapy by controlling the release of HS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8tb02566eDOI Listing

Publication Analysis

Top Keywords

disc degeneration
16
enzyme dual-responsive
8
hydrogen sulfide
8
idd
6
disc
5
dual-responsive release
4
release hydrogen
4
sulfide disc
4
degeneration
4
degeneration therapy
4

Similar Publications

Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments.

View Article and Find Full Text PDF

Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration.

Biomimetics (Basel)

November 2024

Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia.

Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties.

View Article and Find Full Text PDF

Background: Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration.

View Article and Find Full Text PDF

Mechanical function of the annulus fibrosus is preserved following quasi-static compression resulting in endplate fracture.

Clin Biomech (Bristol)

December 2024

Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:

Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.

View Article and Find Full Text PDF

Objective: Symptomatic thoracic disc herniations (TDH) are relatively rare and can be discovered incidentally on neuroimaging. Surgical interventions for TDH represent only 4 % of all surgeries performed for intervertebral disc pathologies, which are most commonly indicated for myelopathy and radiculopathy. Given the absence of publications on rates of readmissions following hospitalization for TDH, we aim to establish baseline metrics for the 90-day all-cause readmission rates and pertinent risk factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!