1,4,7,10-Tetraazacyclododecane (cyclen) has a unique cyclic structure that endows it with a number of characteristics, including its cationic nature, easy modification and strong coordination ability toward a wide range of cations. Zn, which can easily coordinate to cyclen, is an essential metal ion for DNA binding. In this report, Zn(ii)-polycations derived from cyclen were studied as non-viral gene delivery vectors. Polycations were synthesized from diglycidyl ethers and cyclen through ring-opening polymerization, and then Zn(ii)-complexes were obtained by reacting the polycations with Zn(NO)·6HO. UV absorption and circular dichroism spectra revealed that the Zn(ii)-complexes may induce apparent conformational changes of DNA, while polycations could not. Agarose gel retardation assay demonstrated that although the Zn(ii)-polycations exhibited slightly lower DNA binding ability compared to their polycation counterparts, they showed better DNA release, which might favor the gene transfection process. In vitro transfection results revealed that the coordination of Zn(ii) may dramatically increase the transfection efficiency of the polymers. In addition, almost all polycations and their Zn(ii)-complexes exhibited better serum tolerance than polyethylenimine (PEI), especially Zn-cyclen-HD. Flow cytometry and BSA adsorption experiments also demonstrated the good serum tolerance of the Zn(ii)-polycations. Meanwhile, such materials also exhibited acceptable cytotoxicities at transfection dosages. These results may afford us clues for developing novel non-viral gene vectors with high efficiency and biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8tb02414f | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran. Electronic address:
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia. Electronic address:
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India. Electronic address:
Background: The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns.
Objective: This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!